/*----------------------------------------------------------------------------*/
/* libdatastr.c */
/*----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------*/
/* This file is part of LibDataStr. */
/* */
/* LibDataStr is free software: you can redistribute it and/or modify it */
/* under the terms of the GNU Lesser General Public License as published */
/* by the Free Software Foundation, either version 3 of the License, or */
/* (at your option) any later version. */
/* */
/* LibDataStr is distributed in the hope that it will be useful, */
/* but WITHOUT ANY WARRANTY; without even the implied warranty of */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */
/* GNU Lesser General Public License for more details. */
/* */
/* You should have received a copy of the GNU Lesser General Public */
/* License along with LibDataStr. If not, see */
/* . */
/*----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------*/
/* Includes */
/*----------------------------------------------------------------------------*/
#define _LIBDATASTR_C_
/* Utilisation des API sans vérification des arguments */
#define ND_MODE 1
#define SM_MODE 1
#include
//VER_INFO_EXPORT (libdatastr,"$Revision: 1.1 $", "$Name: $",__FILE__,"$Author: smas $")
/*----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------*/
/* FONCTIONS PUBLIQUES */
/*----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------*/
/* FONCTIONS OPTIMISATION MAXIMALE (DS_MODE = 2) */
/*----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------*/
/* Library instance initialisation */
/*----------------------------------------------------------------------------*/
/* (I) Instance: Library instance id */
/* (I) Context: Context name */
/* (I) Debug_Mode: Open library in debug mode */
/*----------------------------------------------------------------------------*/
DST_Status DS_Library_Open_I ( int Instance, const char *Context, DST_Flags Debug_Mode )
{
DST_Status rc;
LGT_Status lg_status;
SMT_Status sm_status;
NDT_Status nd_status;
int sm_debug_flag = SMD_DEBUG_NONE;
NDT_Index_Type index_type = ( NDD_INDEX_STATUS_OPENED | NDD_INDEX_TYPE_TREE | NDD_INDEX_SUBTYPE_BALANCED);
/* Définition du mode debug */
if( Debug_Mode & DSD_DEBUG)
{
DS_stderr = stderr;
sm_debug_flag = SMD_DEBUG;
}
else if( Debug_Mode & DSD_DEBUG_ALL)
{
DS_stderr = stderr;
sm_debug_flag = SMD_DEBUG_ALL;
}
if( ( lg_status = LG_Library_Open( LGD_LOG_WRITER_DEFAULT, false)) != LGS_OK)
{
fprintf( stderr, "Can't open LibLog library: (%d)\n", lg_status);
return( DSS_KO);
}
/* Ouverture de la librairie LIBSHMEM */
if( ( sm_status = SM_Library_Open( Instance, Context, SMD_OPEN | sm_debug_flag)) != SMS_OK)
{
LG_LOG_ERROR_1( "Unable to open the LibShMem library: (%d)", sm_status);
return( DSS_KO);
}
/*
Lors de la première ouverture de la librairie LIBDATASTR,
on crée une structure locale permettant de référencer
les data structures ouvertes.
*/
if( DS_Open_Counter == 0)
{
if( ( nd_status = ND_DataStruct_Open( &OpenedDS_List, 1, &index_type, "DS_OpenedDS_List_Manager", NULL, NULL, NULL, NULL, NULL, TRUE, NULL)) != NDS_OK)
{
LG_LOG_ERROR_1( "Unable to create the opened data structure list: (%d)", nd_status);
SM_Library_Close (SMD_CLOSE);
return( DSS_KO);
}
}
DS_Open_Counter++;
return( DSS_OK);
}
/*----------------------------------------------------------------------------*/
/* Fermeture de l'instance de la librairie */
/*----------------------------------------------------------------------------*/
DST_Status DS_Library_Close_I( void)
{
NDT_Status nd_status;
SMT_Status sm_status;
LGT_Status lg_status;
/*
A la dernière fermeture de la librairie LIBDATASTR, on détruit
la structure locale qui référence les data structures ouvertes.
*/
if( DS_Open_Counter == 1)
{
if( ( nd_status = ND_DataStruct_Close( OpenedDS_List)) != NDS_OK)
{
LG_LOG_ERROR_1( "Unable to close the opened data structure list: (%d)", nd_status);
return( DSS_KO);
}
}
/* Fermeture de la librairie LIBSHMEM */
if( ( sm_status = SM_Library_Close( SMD_CLOSE)) != SMS_OK)
{
LG_LOG_ERROR_1( "Unable to close the LibShMem library: (%d)", sm_status);
return( DSS_KO);
}
DS_Open_Counter--;
if( ( lg_status = LG_Library_Close( false)) != LGS_OK)
{
fprintf( stderr, "Can't close LibLog library: (%d)\n", lg_status);
return( DSS_KO);
}
return( DSS_OK);
}
/*----------------------------------------------------------------------------*/
/* Définition de la sortie standard des messages d'erreur de la librairie */
/*----------------------------------------------------------------------------*/
/* (I) Out : flux de sortie des messages d'erreur */
/*----------------------------------------------------------------------------*/
DST_Status DS_Library_Stderr_Set_I( FILE *Out)
{
DS_stderr = Out;
return( DSS_OK);
}
/*----------------------------------------------------------------------------*/
/* Création / ouverture d'une structure de données */
/*----------------------------------------------------------------------------*/
/* (O) Root : adresse du pointeur sur la racine de la structure */
/* (I) DS_Name : nom de la structure */
/* (I) Type : type de la structure de données */
/* (I) Manager_FileName : nom du fichier qui définit les fonctions manager */
/* (I) Segment_Size : taille ds segments du heap sous-jacent */
/* (I) Open_Mode : mode d'ouverture de la structure */
/* (I) Own_Value : indique si la structure possède ses valeurs */
/*----------------------------------------------------------------------------*/
//ND_DataStruct_Open( &OpenedDS_List, 1, &index_type, "DS_OpenedDS_List_Manager", NULL, NULL, NULL, NULL, NULL, TRUE, NULL)) != NDS_OK)
//DST_Status DS_DataStruct_Open_I( NDT_Root **Root, const char *DS_Name, NDT_DataStruct_Type Type, const char *Manager_FileName, size_t Segment_Size, DST_Flags Open_Mode, int Own_Values);
DST_Status DS_DataStruct_Open_I( NDT_Root **Root_Ptr_Ptr, char *DS_Name, NDT_Index_Nb Index_Nb, NDT_Index_Type *Index_Type_Tab, char *Manager_Name, size_t Segment_Size, DST_Flags Open_Mode, short Own_Value)
{
DST_Status status;
SMT_Status sm_status;
NDT_Status nd_status;
SMT_Heap *heap_ptr;
SMT_DSH *dsh_ptr;
int locked, mode;
DST_RootDesc *rootdesc_ptr, rootdesc_tmp;
DST_DataStruct *opened_datastruct_ptr;
char prefixed_name[ DSD_NAME_SIZE];
union semun Sem_Ctl;
DS_Name_Prefix( prefixed_name, DS_Name);
*Root_Ptr_Ptr = NULL;
/* On définit ce qu'on va faire en fonction du mode d'ouverture demandé et de ce qui existe déjà ou non */
if( SM_Heap_Exist( prefixed_name) == SMS_YES)
{
if( DSD_MSK_OPEN( Open_Mode)) mode = 2;
else if( DSD_MSK_NEW( Open_Mode)) mode = 1;
else
{
LG_LOG_ERROR_1( "The data structure: [%s] already exists and (Flags & DSD_OPEN & DSD_NEW) is false", DS_Name);
return( DSS_ERRAPI);
}
}
else if( DSD_MSK_CREATE( Open_Mode)) mode = 3;
else
{
LG_LOG_ERROR_1( "The data structure: [%s] does no exist and (Flags & DSD_CREATE) is false", DS_Name);
return( DSS_ERRAPI);
}
LG_LOG_TRACE_1( LGD_LOG_LEVEL_DEFAULT, "Creation Mode:(%d)", mode);
switch( mode)
{
case 1:
{
/*--------------- Création d'une nouvelle data structure dans un heap existant -------------*/
/* Ouverture du heap en écriture */
if( ( status = SM_Heap_Open( prefixed_name, &heap_ptr, 0, ( SMD_OPEN | SMD_WRITE), &locked)) != SMS_OK)
{
LG_LOG_ERROR_2( "Unable to open the data structure heap: [%s] for writing, status: (%d)", prefixed_name, sm_status);
return( SMS_KO);
}
/* Création de la node structure */
strncpy( rootdesc_tmp.Heap_Name, prefixed_name, DSD_NAME_LEN);
rootdesc_tmp.Heap_Name[ DSD_NAME_LEN] = '\0';
if( ( nd_status = ND_DataStruct_Open( Root_Ptr_Ptr, Index_Nb, Index_Type_Tab, Manager_Name, NULL, "DS_DataStruct_Alloc", NULL, "DS_DataStruct_Free", NULL, Own_Value, &rootdesc_tmp)) != NDS_OK)
{
LG_LOG_ERROR_2( "Unable to create a new node structure in the existing heap: [%s], status: (%d)", heap_ptr->Name, nd_status);
if( locked == TRUE)
{
if( ( sm_status = SM_Heap_Unlock( heap_ptr)) != SMS_OK)
{
LG_LOG_ERROR_2( "Unable to unlock the data structure heap: [%s], status: (%d)", heap_ptr->Name, sm_status);
}
}
*Root_Ptr_Ptr = NULL;
return( SMS_KO);
}
/* Allocation de mémoire pour la description de la nouvelle data structure */
if( ( status = DS_DataStruct_Alloc( (void **)( &rootdesc_ptr), sizeof( DST_RootDesc), &rootdesc_tmp)) != DSS_OK)
{
LG_LOG_ERROR_2( "Unable to allocate memory for the data structure description for new heap: [%s], status: (%d)", heap_ptr->Name, status);
/*
Strange: why end the heap here ?
if( ( sm_status = SM_Heap_End( prefixed_name)) != SMS_OK)
{
LG_LOG_ERROR_2( "Unable to remove the heap: [%s], status: (%d)", prefixed_name, sm_status);
}
*/
if( locked == TRUE)
{
if( ( sm_status = SM_Heap_Unlock( heap_ptr)) != SMS_OK)
{
LG_LOG_ERROR_2( "Unable to unlock the data structure heap: [%s], status: (%d)", heap_ptr->Name, sm_status);
}
}
*Root_Ptr_Ptr = NULL;
return( status);
}
strncpy( rootdesc_ptr->Heap_Name, prefixed_name, DSD_NAME_LEN);
rootdesc_ptr->Heap_Name[ DSD_NAME_LEN] = '\0';
rootdesc_ptr->Manager_Name = ( *Root_Ptr_Ptr)->Manager_Name;
/* On indique que la structure n'est pas propriétaire de son heap */
rootdesc_ptr->Heap_Owner = FALSE;
/* On indique que la structure est valide */
rootdesc_ptr->Valid = TRUE;
/* On rattache la desription de la data structure à la racine */
( *Root_Ptr_Ptr)->User_Ptr = rootdesc_ptr;
/* Déverrouillage du heap */
if( locked == TRUE)
{
if( ( sm_status = SM_Heap_Unlock( heap_ptr)) != SMS_OK)
{
LG_LOG_ERROR_2( "Unable to unlock the data structure heap: [%s], status: (%d)", heap_ptr->Name, sm_status);
return( DSS_KO);
}
}
return( DSS_OK);
}
case 2:
{
/*--------------- Ouverture d'une data structure existante ------------------*/
/* Si la structure a déjà été ouverte, on ne recommence pas */
if( ( status = DS_DataStruct_IsOpen( Root_Ptr_Ptr, DS_Name)) != DSS_OK)
{
LG_LOG_ERROR_2( "Unable test data structure: [%s] state, status: (%d)", DS_Name, status);
return( status);
}
else
{
if( *Root_Ptr_Ptr != NULL)
{
return( DSS_OK);
}
}
/* Accès au heap sous-jacent en lecture */
if( ( status = SM_Heap_Open( prefixed_name, &heap_ptr, 0, ( SMD_OPEN | SMD_READ), &locked)) != SMS_OK)
{
LG_LOG_ERROR_2( "Unable to open the data structure heap: [%s] for reading, status: (%d)", heap_ptr->Name, status);
if( locked == TRUE)
{
if( ( sm_status = SM_Heap_Unlock( heap_ptr)) != SMS_OK)
{
LG_LOG_ERROR_2( "Unable to unlock the data structure heap: [%s], status: (%d)", heap_ptr->Name, sm_status);
}
}
*Root_Ptr_Ptr = NULL;
return( status);
}
dsh_ptr = heap_ptr->MHH->DSR->Index_Tab[ NDD_INDEX_PRIMARY].Head->Value;
/* La racine de la structure se trouve dans le premier chunk du premier segment du heap */
*Root_Ptr_Ptr = (NDT_Root *)( ( size_t)( dsh_ptr->Start) + sizeof( NDT_Node) + sizeof( SMT_Chunk));
/* Chargement des fonctions manager de la structure */
rootdesc_ptr = (*Root_Ptr_Ptr)->User_Ptr;
if( !rootdesc_ptr)
{
LG_LOG_ERROR_1( "Data structure [%s] has no description defined", DS_Name);
if( locked == TRUE)
{
if( ( sm_status = SM_Heap_Unlock( heap_ptr)) != SMS_OK)
{
LG_LOG_ERROR_2( "Unable to unlock the data structure heap: [%s], status: (%d)", heap_ptr->Name, sm_status);
}
}
*Root_Ptr_Ptr = NULL;
return( DSS_ERRAPI);
}
/*
if( !RootDesc->Manager_Name || !dlopen (( const char *)(RootDesc->Manager_FileName), RTLD_LAZY | RTLD_GLOBAL))
{
sprintf (DS_Error_Msg, "Error DS_DataStruct_Open : unable to load the manager file %s of data structure \"%s\" (%s)", RootDesc->Manager_FileName == NULL ? "undefined" : (char *)(RootDesc->Manager_FileName), DS_Name, dlerror ());
DS_Error_Print ();
if (Locked == TRUE) SM_Heap_Unlock (Heap);
*Root = NULL;
return DSS_ERRDLL;
}
*/
break;
}
case 3:
{
/*--------------- Création d'une nouvelle structure de données dans un nouveau heap -----------------*/
if( !Manager_Name)
{
LG_LOG_ERROR_0( "The manager name is undefined");
return( DSS_ERRAPI);
}
/* Création d'un nouveau heap */
if( ( sm_status = SM_Heap_Open( prefixed_name, &heap_ptr, Segment_Size, ( SMD_CREATE | SMD_WRITE), &locked)) != SMS_OK)
{
LG_LOG_ERROR_2( "Unable to create a heap for the data structure [%s], status: (%d)", DS_Name, sm_status);
return( sm_status);
}
/* Création de la structure de données dans le heap */
strncpy( rootdesc_tmp.Heap_Name, prefixed_name, DSD_NAME_LEN);
rootdesc_tmp.Heap_Name[ DSD_NAME_LEN] = '\0';
if( ( nd_status = ND_DataStruct_Open( Root_Ptr_Ptr, Index_Nb, Index_Type_Tab, Manager_Name, NULL, "DS_DataStruct_Alloc", NULL, "DS_DataStruct_Free", NULL, Own_Value, &rootdesc_tmp)) != NDS_OK)
{
LG_LOG_ERROR_2( "Unable to create a new node structure in new heap: [%s], status: (%d)", heap_ptr->Name, nd_status);
if( ( sm_status = SM_Heap_End( prefixed_name)) != SMS_OK)
{
LG_LOG_ERROR_2( "Unable to remove the heap: [%s], status: (%d)", prefixed_name, sm_status);
}
*Root_Ptr_Ptr = NULL;
return( SMS_KO);
}
/* Allocation de mémoire pour la description de la structure */
if( ( status = DS_DataStruct_Alloc( (void **)( &rootdesc_ptr), sizeof( DST_RootDesc), &rootdesc_tmp)) != DSS_OK)
{
LG_LOG_ERROR_2( "Unable to allocate memory for the data structure description for new heap: [%s], status: (%d)", heap_ptr->Name, status);
if( ( sm_status = SM_Heap_End( prefixed_name)) != SMS_OK)
{
LG_LOG_ERROR_2( "Unable to remove the heap: [%s], status: (%d)", prefixed_name, sm_status);
}
*Root_Ptr_Ptr = NULL;
return( status);
}
strncpy( rootdesc_ptr->Heap_Name, prefixed_name, DSD_NAME_LEN);
rootdesc_ptr->Heap_Name[ DSD_NAME_LEN] = '\0';
rootdesc_ptr->Manager_Name = ( *Root_Ptr_Ptr)->Manager_Name;
/* On indique que la structure est propriétaire du heap */
rootdesc_ptr->Heap_Owner = TRUE;
/* On indique que la structure est valide */
rootdesc_ptr->Valid = TRUE;
/* On rattache la desription de la data structure à la racine */
( *Root_Ptr_Ptr)->User_Ptr = rootdesc_ptr;
/* On crée un sémaphore pour compter le nombre de processus qui ouvrent la structure */
if( ( status = DS_Semaphore_Create( *Root_Ptr_Ptr)) != DSS_OK)
{
LG_LOG_ERROR_2( "Unable to create a semaphore for the data structure: [%s], status: (%d)", DS_Name, status);
if( ( sm_status = SM_Heap_End( prefixed_name)) != SMS_OK)
{
LG_LOG_ERROR_2( "Unable to remove the heap: [%s], status: (%d)", prefixed_name, sm_status);
}
*Root_Ptr_Ptr = NULL;
return( status);
}
break;
}
default:
{
break;
}
}
/* On incrémente le sémaphore qui compte le nombre de processus qui ouvrent la structure */
if( ( status = DS_Semaphore_Operate( rootdesc_ptr->OpenSemId, DS_SemOp_Open, 1)) != DSS_OK)
{
LG_LOG_ERROR_2( "Unable to incremente the semaphore of data structure: [%s], status: (%d)", DS_Name, status);
if( locked == TRUE)
{
if( ( sm_status = SM_Heap_Unlock( heap_ptr)) != SMS_OK)
{
LG_LOG_ERROR_2( "Unable to unlock the data structure heap: [%s], status: (%d)", heap_ptr->Name, sm_status);
}
}
if( mode == 3)
{
semctl( rootdesc_ptr->OpenSemId, 0, IPC_RMID, Sem_Ctl);
if( ( sm_status = SM_Heap_End( prefixed_name)) != SMS_OK)
{
LG_LOG_ERROR_2( "Unable to remove the heap: [%s], status: (%d)", prefixed_name, sm_status);
}
}
else
{
DS_Semaphore_Operate( rootdesc_ptr->OpenSemId, DS_SemOp_Close, 1);
}
*Root_Ptr_Ptr = NULL;
return( status);
}
/* On ajoute la data structure à la liste des structures ouvertes par le processus courant */
if( ( nd_status = ND_Value_Alloc( (void **)&opened_datastruct_ptr, OpenedDS_List, DS_Name, Root_Ptr_Ptr)) != NDS_OK)
{
LG_LOG_ERROR_2( "Unable to alloc a new opened data structure element: [%s], status: (%d)", DS_Name, nd_status);
if( locked == TRUE)
{
if( ( sm_status = SM_Heap_Unlock( heap_ptr)) != SMS_OK)
{
LG_LOG_ERROR_2( "Unable to unlock the data structure heap: [%s], status: (%d)", heap_ptr->Name, sm_status);
}
}
if( mode == 3)
{
semctl( rootdesc_ptr->OpenSemId, 0, IPC_RMID, Sem_Ctl);
if( ( sm_status = SM_Heap_End( prefixed_name)) != SMS_OK)
{
LG_LOG_ERROR_2( "Unable to remove the heap: [%s], status: (%d)", prefixed_name, sm_status);
}
}
else
{
DS_Semaphore_Operate( rootdesc_ptr->OpenSemId, DS_SemOp_Close, 1);
}
*Root_Ptr_Ptr = NULL;
return( DSS_KO);
}
if( ( nd_status = ND_DataStruct_Value_Add( OpenedDS_List, (void *)opened_datastruct_ptr)) != NDS_OK)
{
LG_LOG_ERROR_2( "Unable to add an new data structure element: [%s] to the opened structure list, status: (%d)", DS_Name, status);
if( ( nd_status = ND_Value_Free( OpenedDS_List, (void *)opened_datastruct_ptr)) != NDS_OK)
{
LG_LOG_ERROR_2( "Unable to free a new opened data structure element: [%s], status: (%d)", DS_Name, nd_status);
}
if( locked == TRUE)
{
if( ( sm_status = SM_Heap_Unlock( heap_ptr)) != SMS_OK)
{
LG_LOG_ERROR_2( "Unable to unlock the data structure heap: [%s], status: (%d)", heap_ptr->Name, sm_status);
}
}
if( mode == 3)
{
semctl( rootdesc_ptr->OpenSemId, 0, IPC_RMID, Sem_Ctl);
if( ( sm_status = SM_Heap_End( prefixed_name)) != SMS_OK)
{
LG_LOG_ERROR_2( "Unable to remove the heap: [%s], status: (%d)", prefixed_name, sm_status);
}
}
else
{
DS_Semaphore_Operate( rootdesc_ptr->OpenSemId, DS_SemOp_Close, 1);
}
*Root_Ptr_Ptr = NULL;
return( DSS_KO);
}
/* Déverrouillage du heap */
if( locked == TRUE)
{
if( sm_status = ( SM_Heap_Unlock( heap_ptr)) != SMS_OK)
{
LG_LOG_ERROR_2( "Unable to unlock the data structure heap: [%s], status: (%d)", prefixed_name, sm_status);
if( ( nd_status = ND_DataStruct_Value_Remove( OpenedDS_List, opened_datastruct_ptr)) != NDS_OK)
{
LG_LOG_ERROR_2( "Unable to remove a data structure element: [%s] to the opened structure list, status: (%d)", DS_Name, status);
}
if( ( nd_status = ND_Value_Free( OpenedDS_List, opened_datastruct_ptr)) != NDS_OK)
{
LG_LOG_ERROR_2( "Unable to free a new opened data structure element: [%s], status: (%d)", DS_Name, nd_status);
}
if( mode == 3)
{
semctl( rootdesc_ptr->OpenSemId, 0, IPC_RMID, Sem_Ctl);
if( ( sm_status = SM_Heap_End( prefixed_name)) != SMS_OK)
{
LG_LOG_ERROR_2( "Unable to remove the heap: [%s], status: (%d)", prefixed_name, sm_status);
}
}
else
{
DS_Semaphore_Operate( rootdesc_ptr->OpenSemId, DS_SemOp_Close, 1);
}
*Root_Ptr_Ptr = NULL;
return( DSS_KO);
}
}
return( DSS_OK);
}
/*----------------------------------------------------------------------------*/
/* Verrouillage d'une structure de données */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure */
/* (I) Lock_Mode : type de verrou à poser sur la structure */
/* (O) Locked : verrou effectif (TRUE ou FALSE) */
/*----------------------------------------------------------------------------*/
DST_Status DS_DataStruct_Lock_I( NDT_Root *Root_Ptr, DST_Flags Lock_Mode, int *Locked )
{
char *Heap_Name = ( (DST_RootDesc *)( Root_Ptr->User_Ptr))->Heap_Name;
SMT_Status sm_status;
SMT_Heap *heap_ptr;
/* Réouverture du heap sous-jacent (rafraîchissement des segments) + verrouillage */
if( ( sm_status = SM_Heap_Open( Heap_Name, &heap_ptr, 0, ( SMD_OPEN | Lock_Mode), Locked)) != SMS_OK)
{
LG_LOG_ERROR_3( "Unable to reopen the data structure heap: [%s] for [%s], status: (%d)",
Heap_Name, (DSD_MSK_READ( Lock_Mode) ? "reading" : "writing"), sm_status);
return( DSS_KO);
}
return( DSS_OK);
}
/*----------------------------------------------------------------------------*/
/* Déverrouillage d'une structure de données */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure */
/*----------------------------------------------------------------------------*/
DST_Status DS_DataStruct_Unlock_I( NDT_Root *Root_Ptr)
{
char *Heap_Name = ( (DST_RootDesc *)( Root_Ptr->User_Ptr))->Heap_Name;
SMT_Status sm_status;
SMT_Heap *heap_ptr;
if( ( sm_status = SM_Heap_IsOpen( Heap_Name, &heap_ptr)) != SMS_OK)
{
LG_LOG_ERROR_2( "Unable to check if heap: [%s] is open, status: (%d)", Heap_Name, sm_status);
return( DSS_KO);
}
else
{
if( heap_ptr == NULL)
{
LG_LOG_ERROR_1( "Data structure heap: [%s] is not open", Heap_Name);
return( DSS_KO);
}
}
if( ( sm_status = SM_Heap_Unlock( heap_ptr)) != SMS_OK)
{
LG_LOG_ERROR_2( "Unable to unlock the data structure heap: [%s], status: (%d)", Heap_Name, sm_status);
return( DSS_KO);
}
return( DSS_OK);
}
/*----------------------------------------------------------------------------*/
/* Fermeture d'une structure de données */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure de données à fermer */
/* (I) Close_Mode : mode de fermeture de la structure (destruction ou non) */
/*----------------------------------------------------------------------------*/
DST_Status DS_DataStruct_Close_I( NDT_Root *Root_Ptr, DST_Flags Close_Mode)
{
DST_RootDesc *RootDesc_Ptr = (DST_RootDesc *)( Root_Ptr->User_Ptr);
DST_Status status;
NDT_Status nd_status;
SMT_Status sm_status;
SMT_Heap *heap_ptr;
char heap_name[ DSD_NAME_SIZE], *ds_name;
DST_DataStruct to_remove, *opened_datastruct_ptr;
union semun sem_ctl;
strcpy( heap_name, RootDesc_Ptr->Heap_Name);
ds_name = strstr( heap_name, DS_PREFIX);
if( ds_name) ds_name += strlen( DS_PREFIX) + 1;
else ds_name = heap_name;
if( Close_Mode == DSD_DESTROY) /* Destruction de la data structure */
{
/* La data structure est-elle propriétaire du heap sous-jacent ? */
if( RootDesc_Ptr->Heap_Owner == TRUE)
{
/* On vérifie qu'aucun autre processus n'a ouvert la data structure */
if( ( status = DS_Semaphore_Operate( RootDesc_Ptr->OpenSemId, DS_SemOp_Destroy, 2)) != DSS_OK)
{
LG_LOG_ERROR_1( "Unable to destroy the data structure: [%s] because it is opened by another process", ds_name);
return( status);
}
/* On supprime la structure proprement (toutes les valeurs sont supprimées les unes après les autres) */
if( ( nd_status = ND_DataStruct_Close( Root_Ptr)) != NDS_OK)
{
LG_LOG_ERROR_2( "Unable to close the node structure of data structure: [%s], status: (%d)", ds_name, nd_status);
return( DSS_KO);
}
/* Suppression du sémaphore */
semctl( RootDesc_Ptr->OpenSemId, 0, IPC_RMID, sem_ctl);
/* On supprime maintenant le heap */
if( ( sm_status = SM_Heap_End( heap_name)) != SMS_OK)
{
LG_LOG_ERROR_2( "Unable to remove the heap: [%s], status: (%d)", heap_name, sm_status);
return( DSS_KO);
}
}
else
{
/*
Dans le cas où la data structure n'est pas propriétaire du heap sous-jacent,
on ne peut pas garantir qu'aucun autre processus ne l'a ouverte.
On la supprime donc sans contrôle.
*/
if( ( nd_status = ND_DataStruct_Close( Root_Ptr)) != NDS_OK)
{
LG_LOG_ERROR_2( "Unable to close the node structure of data structure: [%s], status: (%d)", ds_name, nd_status);
return( DSS_KO);
}
if( ( status = DS_DataStruct_Free( RootDesc_Ptr, (void *)RootDesc_Ptr)) != DSS_OK)
{
LG_LOG_ERROR_2( "Unable to free data structure: [%s], status: (%d)", ds_name, status);
}
return( status);
}
}
else /* Fermeture simple de la data structure */
{
/* On décrémente le sémaphore qui compte le nombre de processus ayant ouvert la data structure */
if( ( status = DS_Semaphore_Operate( RootDesc_Ptr->OpenSemId, DS_SemOp_Close, 1)) != DSS_OK)
{
LG_LOG_ERROR_1( "Unable to decremente the semaphore of data structure: [%s]", ds_name);
return( status);
}
/* Fermeture simple du heap */
if( ( sm_status = SM_Heap_IsOpen( heap_name, &heap_ptr)) != SMS_OK)
{
LG_LOG_ERROR_2( "Unable to check if heap: [%s] is open, status: (%d)", heap_name, sm_status);
return( DSS_KO);
}
else
{
if( heap_ptr != NULL)
{
if( ( sm_status = SM_Heap_Close( heap_ptr)) != SMS_OK)
{
LG_LOG_ERROR_2( "Unable to close heap: [%s], status: (%d)", heap_name, sm_status);
return( DSS_KO);
}
}
}
}
/* Suppression de la data structure de la liste des structures ouvertes */
to_remove.Name = ds_name;
if( ( nd_status = ND_DataStruct_Value_Find( ( void **)&opened_datastruct_ptr, OpenedDS_List, &to_remove)) != NDS_OK)
{
LG_LOG_ERROR_2( "Unable to find data struct element: [%s] from opened structure list, status: (%d)", ds_name, nd_status);
return( DSS_KO);
}
else
{
if( ( nd_status = ND_DataStruct_Value_Remove( OpenedDS_List, opened_datastruct_ptr)) != NDS_OK)
{
LG_LOG_ERROR_2( "Unable to remove data struct element: [%s] from opened structure list, status: (%d)", ds_name, nd_status);
return( DSS_KO);
}
else
{
if( ( nd_status = ND_Value_Free( OpenedDS_List, opened_datastruct_ptr)) != NDS_OK)
{
LG_LOG_ERROR_2( "Unable to free data struct element: [%s] from opened structure list, status: (%d)", ds_name, nd_status);
return( DSS_KO);
}
}
}
return( DSS_OK);
}
/*----------------------------------------------------------------------------*/
/* Print data structure information */
/*----------------------------------------------------------------------------*/
/* (I) Stream: Output stream */
/* (I) Root_Ptr: Data structure pointer */
/*----------------------------------------------------------------------------*/
DST_Status DS_DataStruct_Info_Print_I( FILE *Out, NDT_Root *Root_Ptr)
{
DST_RootDesc *RootDesc_Ptr = (DST_RootDesc *)( Root_Ptr->User_Ptr);
DST_Status status;
NDT_Status nd_status;
LG_LOG_INFO_5( "DatatStruct Heap_Name: [%s] Manager_Name: [%s] OpenSemId: (%d) Heap_Owner: [%s] Valid: [%s]",
RootDesc_Ptr->Heap_Name, RootDesc_Ptr->Manager_Name, RootDesc_Ptr->OpenSemId, DSD_BOOL_VALUE_ASCII_GET( RootDesc_Ptr->Heap_Owner), DSD_BOOL_VALUE_ASCII_GET( RootDesc_Ptr->Valid));
/* On vérifie que la data structure est valide */
if( RootDesc_Ptr->Valid == FALSE)
{
int Nb_Detected, Nb_Corrected;
/* On vérifie la structure */
/*
Nb_Detected = Nb_Corrected = 0;
rc = DS_DataStruct_Check_L (Root, &Nb_Detected, &Nb_Corrected, DS_stderr);
if (rc != DSS_OK)
{
sprintf (DS_Error_Msg, "Error DS_DataStruct_Info_Print : unable to check the data structure");
DS_Error_Print ();
return rc;
}
*/
}
/* Affichage des informations sur la structure */
if( ( nd_status = ND_DataStruct_Info_Print( Out, Root_Ptr, NDD_RECURSIVE_MODE_PARENT_CHILD, 99, 0)) != NDS_OK)
{
LG_LOG_ERROR_1( "Unable to print info about the data structure: (%d)", nd_status);
return( DSS_KO);
}
/* Dump SM */
SM_Library_Dump( stderr);
return( DSS_OK);
}
/*----------------------------------------------------------------------------*/
/* Réorganisation d'une structure de données */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure de données à réorganiser */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_DataStruct_Reorg_I ( NDT_Root * Root )
{
DST_Status rc;
DST_RootDesc * RootDesc = (DST_RootDesc *)(Root->User);
/* On vérifie que la data structure est valide */
/*
if (RootDesc->Valid == FALSE)
{
int Nb_Detected, Nb_Corrected;
/* On vérifie la structure */
/*
Nb_Detected = Nb_Corrected = 0;
rc = DS_DataStruct_Check_L (Root, &Nb_Detected, &Nb_Corrected, DS_stderr);
if (rc != DSS_OK)
{
sprintf (DS_Error_Msg, "Error DS_DataStruct_Reorg : unable to check the data structure");
DS_Error_Print ();
return rc;
}
}
/* On rend la structure invalide, le temps de sa réorganisation */
/*
RootDesc->Valid = FALSE;
/* Réorganisation de la node structure */
/*
rc = ND_DataStruct_Reorg (Root);
if (rc != NDS_OK)
{
sprintf (DS_Error_Msg, "Error DS_DataStruct_Reorg : unable to reorganize the node structure ");
DS_Error_Print ();
RootDesc->Valid = TRUE;
if (!DS_ERROR(rc)) RootDesc->Valid = TRUE;
return rc;
}
/* On rend la structure à nouveau valide */
/*
RootDesc->Valid = TRUE;
return DSS_OK;
}
/*----------------------------------------------------------------------------*/
/* Parcours de tous les noeuds d'une structure de données et exécution d'une */
/* commande sur chacun d'eux */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure de données à parcourir*/
/* (I) Command : commande à exécuter sur chaque noeud traversé */
/* (I) Data : pointeur de données utilisateur */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_DataStruct_Traverse_I ( NDT_Root * Root, NDT_Command Command, void * Data )
{
DST_Status rc;
DST_RootDesc * RootDesc = (DST_RootDesc *)(Root->User);
/* On vérifie que la data structure est valide */
/*
if (RootDesc->Valid == FALSE)
{
int Nb_Detected, Nb_Corrected;
/* On vérifie la structure */
/*
Nb_Detected = Nb_Corrected = 0;
rc = DS_DataStruct_Check_L (Root, &Nb_Detected, &Nb_Corrected, DS_stderr);
if (rc != DSS_OK)
{
sprintf (DS_Error_Msg, "Error DS_DataStruct_Traverse : unable to check the data structure");
DS_Error_Print ();
return rc;
}
}
/* On rend éventuellement la structure invalide le temps de sa traversée */
/*
switch ((int)Command)
{
case NDD_CMD_PRINT_VALUE:
break;
default:
RootDesc->Valid = FALSE;
break;
}
/* Traversée de la node structure */
/*
rc = ND_DataStruct_Traverse (Root, Command, Data);
if (rc != NDS_OK)
{
sprintf (DS_Error_Msg, "Error DS_DataStruct_Traverse : unable to traverse the node structure ");
DS_Error_Print ();
if (!DS_ERROR(rc)) RootDesc->Valid = TRUE;
return rc;
}
/* On rend la structure valide */
/*
RootDesc->Valid = TRUE;
return DSS_OK;
}
/*----------------------------------------------------------------------------*/
/* Conversion d'une structure de données d'un type en un autre */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure de données */
/* (I) Target_Type : type de structure cible */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_DataStruct_Convert_I ( NDT_Root * Root, NDT_DataStruct_Type Target_Type )
{
DST_Status rc;
DST_RootDesc * RootDesc = (DST_RootDesc *)(Root->User);
/* On vérifie que la data structure est valide */
/*
if (RootDesc->Valid == FALSE)
{
int Nb_Detected, Nb_Corrected;
/* On vérifie la structure */
/*
Nb_Detected = Nb_Corrected = 0;
rc = DS_DataStruct_Check_L (Root, &Nb_Detected, &Nb_Corrected, DS_stderr);
if (rc != DSS_OK)
{
sprintf (DS_Error_Msg, "Error DS_DataStruct_Convert : unable to check the data structure");
DS_Error_Print ();
return rc;
}
}
/* On rend la structure invalide le temps de sa conversion */
/*
RootDesc->Valid = FALSE;
/* Conversion de la node structure */
/*
rc = ND_DataStruct_Convert (Root, Target_Type);
if (rc != NDS_OK)
{
sprintf (DS_Error_Msg, "Error DS_DataStruct_Convert : unable to convert the node structure");
DS_Error_Print ();
if (!DS_ERROR(rc)) RootDesc->Valid = TRUE;
return rc;
}
/* On rend la structure à nouveau valide */
/*
RootDesc->Valid = TRUE;
return DSS_OK;
}
/*----------------------------------------------------------------------------*/
/* Affichage d'une structure de données */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure de données à afficher */
/* (I) Out : flux de sortie */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_DataStruct_Print_I ( NDT_Root * Root, FILE * Out )
{
return DS_DataStruct_Traverse_I (Root, NDD_CMD_PRINT_VALUE, Out);
}
/*----------------------------------------------------------------------------*/
/* Fonction de vérification / réparation d'une structure de données */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure */
/* (O) Nb_Detected : pointeur sur le nombre d'erreurs détectées */
/* (O) Nb_Corrected : pointeur sur le nombre d'erreurs corrigées */
/* (I) Out : flux de sortie du rapport */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_DataStruct_Check_I ( NDT_Root * Root, int * Nb_Detected, int * Nb_Corrected, FILE * Out )
{
DST_Status rc;
SMT_Heap * Heap;
int Locked;
char * Heap_Name;
DST_Flags Previous_Lock;
DST_RootDesc * RootDesc = (DST_RootDesc *)(Root->User);
Heap_Name = RootDesc->Heap_Name;
/* On sauvegarde l'état de verrouillage précédent */
/*
rc = SM_Heap_IsOpen (Heap_Name, &Heap);
if (rc != SMS_YES)
{
sprintf (DS_Error_Msg, "Error DS_DataStruct_Check : the data structure heap \"%s\" is not open", Heap_Name);
DS_Error_Print ();
return rc;
}
Previous_Lock = Heap->Lock_Mode;
/* Verrouillage de la data structure en écriture */
/*
rc = DS_DataStruct_Lock_I (Root, SMD_WRITE, &Locked);
if (rc != DSS_OK)
{
sprintf (DS_Error_Msg, "Error ND_DataStruct_Check : unable to lock the data structure for writing");
DS_Error_Print ();
return rc;
}
/* Vérification du heap sous-jacent à la data structure */
/*
rc = SM_Heap_Check (Heap, Nb_Detected, Nb_Corrected, Out);
if (rc != SMS_OK)
{
if (Previous_Lock == SMD_UNDEF) DS_DataStruct_Unlock_I (Root);
else DS_DataStruct_Lock_I (Root, Previous_Lock, &Locked);
return rc;
}
else
{
/* Vérification de la structure de noeuds */
/*
fprintf (Out, "Checking the node structure ...\n");
rc = ND_DataStruct_Check (Root, Nb_Detected, Nb_Corrected, Out);
}
/* On valide ou invalide la structure selon le résultat */
/*
if (*Nb_Corrected == *Nb_Detected) RootDesc->Valid = TRUE;
else RootDesc->Valid = FALSE;
/* Retour au mode de verrouillage précédent */
/*
if (Previous_Lock == SMD_UNDEF) DS_DataStruct_Unlock_I (Root);
else DS_DataStruct_Lock_I (Root, Previous_Lock, &Locked);
/* Affichage du résultat de la procédure de vérification */
/*
if (*Nb_Detected)
{
fprintf (Out, "%d/%d error(s) corrected in the data structure\n", *Nb_Corrected, *Nb_Detected);
if (*Nb_Corrected < *Nb_Detected) return DSS_KO;
}
else fprintf (Out, "No error detected in the data structure\n");
return rc;
}
/*----------------------------------------------------------------------------*/
/* Print all the data structure values */
/*----------------------------------------------------------------------------*/
/* (I) Stream: Output stream */
/* (I) Root_Ptr: Data structure pointer */
/* (I) Recursive_Mode: Child or Parent */
/* (I) Recursive_Depth: Curent recursion depth */
/* (I) Recursive_Offset: Curent print out offset */
/* (I) ...: User args */
/*----------------------------------------------------------------------------*/
DST_Status DS_DataStruct_Value_Print_I( FILE *Out_Ptr, NDT_Root *Root_Ptr, NDT_Recursive_Mode Recursive_Mode, NDT_Recursive_Depth Recursive_Depth, NDT_Recursive_Offset Recursive_Offset, ...)
{
DST_RootDesc *RootDesc_Ptr = (DST_RootDesc *)( Root_Ptr->User_Ptr);
DST_Status status;
NDT_Status nd_status;
va_list user_args;
va_start( user_args, Recursive_Offset);
/* On vérifie que la data structure est valide */
/*
if (RootDesc->Valid == FALSE)
{
int Nb_Detected, Nb_Corrected;
/* On vérifie la structure */
/*
Nb_Detected = Nb_Corrected = 0;
rc = DS_DataStruct_Check_L (Root, &Nb_Detected, &Nb_Corrected, DS_stderr);
if (rc != DSS_OK)
{
sprintf (DS_Error_Msg, "Error DS_DataStruct_Dump : unable to check the data structure");
DS_Error_Print ();
return rc;
}
}
*/
/* Affichage de la node structure */
if( ( nd_status = ND_DataStruct_Value_Print_VI( Out_Ptr, Root_Ptr, Recursive_Mode, Recursive_Depth, Recursive_Offset, &user_args)) != NDS_OK)
{
LG_LOG_ERROR_1( "Unable to dump the node structure: (%d)", nd_status);
status = DSS_KO;
}
else
{
status = DSS_OK;
}
va_end( user_args);
return( status);
}
/*----------------------------------------------------------------------------*/
/* Récupération du premier noeud d'une structure */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine dont on cherche le premier noeud */
/* (O) Node : pointeur sur le noeud à récupérer */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Node_First_Get_I ( NDT_Root * Root, NDT_Node ** Node )
{
DST_Status rc;
DST_RootDesc * RootDesc = (DST_RootDesc *)(Root->User);
/* On vérifie que la data structure est valide */
/*
if (RootDesc->Valid == FALSE)
{
int Nb_Detected, Nb_Corrected;
/* On vérifie la structure */
/*
Nb_Detected = Nb_Corrected = 0;
rc = DS_DataStruct_Check_L (Root, &Nb_Detected, &Nb_Corrected, DS_stderr);
if (rc != DSS_OK)
{
sprintf (DS_Error_Msg, "Error DS_Node_First_Get : unable to check the data structure");
DS_Error_Print ();
return rc;
}
}
/* Récupération du premier noeud */
/*
rc = ND_Node_First_Get (Root, Node);
return rc;
}
/*----------------------------------------------------------------------------*/
/* Récupération du dernier noeud d'une structure */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine dont on cherche le dernier noeud */
/* (O) Node : pointeur sur le noeud à récupérer */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Node_Last_Get_I ( NDT_Root * Root, NDT_Node ** Node )
{
DST_Status rc;
DST_RootDesc * RootDesc = (DST_RootDesc *)(Root->User);
/* On vérifie que la data structure est valide */
/*
if (RootDesc->Valid == FALSE)
{
int Nb_Detected, Nb_Corrected;
/* On vérifie la structure */
/*
Nb_Detected = Nb_Corrected = 0;
rc = DS_DataStruct_Check_L (Root, &Nb_Detected, &Nb_Corrected, DS_stderr);
if (rc != DSS_OK)
{
sprintf (DS_Error_Msg, "Error DS_Node_Last_Get : unable to check the data structure");
DS_Error_Print ();
return rc;
}
}
/* Récupération du dernier noeud */
/*
rc = ND_Node_Last_Get (Root, Node);
return rc;
}
/*----------------------------------------------------------------------------*/
/* Récupération du noeud suivant */
/*----------------------------------------------------------------------------*/
/* (I) Node : pointeur sur le noeud dont on cherche le suivant */
/* (O) Next_Node : pointeur sur le noeud suivant */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Node_Next_Get_I ( NDT_Node * Node, NDT_Node ** Next_Node )
{
DST_Status rc;
DST_RootDesc * RootDesc = (DST_RootDesc *)(Node->Root->User);
/* On vérifie que la data structure est valide */
/*
if (RootDesc->Valid == FALSE)
{
int Nb_Detected, Nb_Corrected;
/* On vérifie la structure */
/*
Nb_Detected = Nb_Corrected = 0;
rc = DS_DataStruct_Check_L (Node->Root, &Nb_Detected, &Nb_Corrected, DS_stderr);
if (rc != DSS_OK)
{
sprintf (DS_Error_Msg, "Error DS_Node_Next_Get : unable to check the data structure");
DS_Error_Print ();
return rc;
}
}
/* Récupération du noeud suivant */
/*
rc = ND_Node_Next_Get (Node, Next_Node);
return rc;
}
/*----------------------------------------------------------------------------*/
/* Récupération du noeud précédant */
/*----------------------------------------------------------------------------*/
/* (I) Node : pointeur sur le noeud dont on cherche le précédant */
/* (O) Prev_Node : pointeur sur le noeud précédant */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Node_Previous_Get_I ( NDT_Node * Node, NDT_Node ** Prev_Node )
{
DST_Status rc;
DST_RootDesc * RootDesc = (DST_RootDesc *)(Node->Root->User);
/* On vérifie que la data structure est valide */
/*
if (RootDesc->Valid == FALSE)
{
int Nb_Detected, Nb_Corrected;
/* On vérifie la structure */
/*
Nb_Detected = Nb_Corrected = 0;
rc = DS_DataStruct_Check_L (Node->Root, &Nb_Detected, &Nb_Corrected, DS_stderr);
if (rc != DSS_OK)
{
sprintf (DS_Error_Msg, "Error DS_Node_Previous_Get : unable to check the data structure");
DS_Error_Print ();
return rc;
}
}
/* Récupération du noeud précédent */
/*
rc = ND_Node_Previous_Get (Node, Prev_Node);
return rc;
}
/*----------------------------------------------------------------------------*/
/* Ajout d'un noeud à une structure de données */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure de données */
/* (I) Node : pointeur sur le noeud à ajouter */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Node_Add_I ( NDT_Root * Root, NDT_Node * Node )
{
DST_Status rc;
DST_RootDesc * RootDesc = (DST_RootDesc *)(Root->User);
/* On vérifie que la data structure est valide */
/*
if (RootDesc->Valid == FALSE)
{
int Nb_Detected, Nb_Corrected;
/* On vérifie la structure */
/*
Nb_Detected = Nb_Corrected = 0;
rc = DS_DataStruct_Check_L (Root, &Nb_Detected, &Nb_Corrected, DS_stderr);
if (rc != DSS_OK)
{
sprintf (DS_Error_Msg, "Error DS_Node_Add : unable to check the data structure");
DS_Error_Print ();
return rc;
}
}
/* On rend la structure invalide le temps de l'ajout */
/*
RootDesc->Valid = FALSE;
/* Ajout du noeud */
/*
rc = ND_Node_Add (Root, Node);
if (rc != NDS_OK)
{
sprintf (DS_Error_Msg, "Error DS_Node_Add : unable to add a node to the data structure");
DS_Error_Print ();
if (!DS_ERROR(rc)) RootDesc->Valid = TRUE;
return rc;
}
/* On rend la structure à nouveau valide */
/*
RootDesc->Valid = TRUE;
return DSS_OK;
}
/*----------------------------------------------------------------------------*/
/* Suppression d'un noeud dans une structure de données */
/*----------------------------------------------------------------------------*/
/* (I) Node : pointeur sur le noeud à supprimer */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Node_Remove_I ( NDT_Node * Node )
{
DST_Status rc;
NDT_Root * Root;
DST_RootDesc * RootDesc = (DST_RootDesc *)(Node->Root->User);
Root = Node->Root;
/* On vérifie que la data structure est valide */
/*
if (RootDesc->Valid == FALSE)
{
int Nb_Detected, Nb_Corrected;
/* On vérifie la structure */
/*
Nb_Detected = Nb_Corrected = 0;
rc = DS_DataStruct_Check_L (Root, &Nb_Detected, &Nb_Corrected, DS_stderr);
if (rc != DSS_OK)
{
sprintf (DS_Error_Msg, "Error DS_Node_Remove : unable to check the data structure");
DS_Error_Print ();
return rc;
}
}
/* On rend la structure invalide le temps de la suppression du noeud */
/*
RootDesc->Valid = FALSE;
/* Suppression dans la node structure */
/*
rc = ND_Node_Remove (Node);
if (rc != NDS_OK)
{
sprintf (DS_Error_Msg, "Error DS_Node_Remove : unable to remove a node from the structure");
DS_Error_Print ();
if (!DS_ERROR(rc)) RootDesc->Valid = TRUE;
return rc;
}
/* On rend la structure à nouveau valide */
/*
RootDesc->Valid = TRUE;
return DSS_OK;
}
/*----------------------------------------------------------------------------*/
/* Recherche un noeud dans un arbre et retourne le pointeur sur le noeud */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de l'abre */
/* (O) Node : adresse du pointeur sur le noeud à récuperer */
/* (I) Value : pointeur sur la valeur à rechercher */
/* (I) Data : pointeur de données */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Node_Find_I ( NDT_Root * Root, NDT_Node ** Node, void * Value, void * Data )
{
DST_Status rc;
DST_RootDesc * RootDesc = (DST_RootDesc *)(Root->User);
*Node = NULL;
/* On vérifie que la data structure est valide */
/*
if (RootDesc->Valid == FALSE)
{
int Nb_Detected, Nb_Corrected;
/* On vérifie la structure */
/*
Nb_Detected = Nb_Corrected = 0;
rc = DS_DataStruct_Check_L (Root, &Nb_Detected, &Nb_Corrected, DS_stderr);
if (rc != DSS_OK)
{
sprintf (DS_Error_Msg, "Error DS_Node_Find : unable to check the data structure");
DS_Error_Print ();
return rc;
}
}
/* Recherche dans la node structure */
/*
rc = ND_Node_Find (Root, Node, Value, Data);
return rc;
}
/*----------------------------------------------------------------------------*/
/* Allocation d'une valeur d'une structure de données */
/*----------------------------------------------------------------------------*/
/* (O) Value : adresse d'un pointeur sur la valeur à allouer */
/* (I) Root : pointeur sur la racine de la structure de données */
/* (I) ... : arguments relatifs à l'allocation de la valeur */
/*----------------------------------------------------------------------------*/
DST_Status DS_Value_Alloc_I( void **Value_Ptr_Ptr, NDT_Root *Root_Ptr, ... )
{
DST_Status status;
NDT_Status nd_status;
va_list user_args;
/* Récupération des arguments pour l'allocation de la valeur */
va_start( user_args, Root_Ptr);
/* Appel du manager */
if( ( nd_status = ND_Manager_Exec( Root_Ptr, NDD_INDEX_UNKNOWN, NULL, NDD_CMD_VALUE_ALLOC, Value_Ptr_Ptr, &user_args)) != NDS_OK)
{
LG_LOG_ERROR_1( "Unnable to alloc a new value: (%d)", nd_status);
status = DSS_KO;
}
else
{
status = DSS_OK;
}
va_end( user_args);
return( status);
}
/*----------------------------------------------------------------------------*/
/* Ajout d'une valeur à une structure de données */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure de données */
/* (I) Value : pointeur sur la valeur à ajouter à la structure de données */
/*----------------------------------------------------------------------------*/
DST_Status DS_Value_Add_I( NDT_Root *Root_Ptr, void *Value_Ptr)
{
DST_RootDesc *RootDesc_Ptr = (DST_RootDesc *)( Root_Ptr->User_Ptr);
DST_Status status;
NDT_Status nd_status;
/* On vérifie que la data structure est valide */
/*
if( RootDesc_Ptr->Valid == FALSE)
{
int Nb_Detected, Nb_Corrected;
/* On vérifie la structure */
/*
Nb_Detected = Nb_Corrected = 0;
rc = DS_DataStruct_Check_L (Root, &Nb_Detected, &Nb_Corrected, DS_stderr);
if (rc != DSS_OK)
{
sprintf (DS_Error_Msg, "Error DS_Value_Add : unable to check the data structure");
DS_Error_Print ();
return rc;
}
}
*/
/* On rend la structure invalide le temps de l'ajout */
RootDesc_Ptr->Valid = FALSE;
/* Ajout de la valeur */
if( ( nd_status = ND_DataStruct_Value_Add( Root_Ptr, Value_Ptr)) != NDS_OK)
{
LG_LOG_ERROR_1( "Unable to add a value to the data structure: (%d)", nd_status);
// if (!DS_ERROR(rc)) RootDesc->Valid = TRUE;
return( DSS_KO);
}
/* On rend la structure à nouveau valide */
RootDesc_Ptr->Valid = TRUE;
return( DSS_OK);
}
/*----------------------------------------------------------------------------*/
/* Suppression du premier noeud correspondant à une valeur donnée */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure de données */
/* (I) Reference_Value : pointeur sur la valeur de référence */
/* (I) Removed_Value : adresse d'un pointeur sur la valeur supprimée */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Value_Remove_I ( NDT_Root * Root, void * Reference_Value, void ** Removed_Value )
{
DST_Status rc;
DST_RootDesc * RootDesc = (DST_RootDesc *)(Root->User);
/* On vérifie que la data structure est valide */
/*
if (RootDesc->Valid == FALSE)
{
int Nb_Detected, Nb_Corrected;
/* On vérifie la structure */
/*
Nb_Detected = Nb_Corrected = 0;
rc = DS_DataStruct_Check_L (Root, &Nb_Detected, &Nb_Corrected, DS_stderr);
if (rc != DSS_OK)
{
sprintf (DS_Error_Msg, "Error DS_Value_Remove : unable to check the data structure");
DS_Error_Print ();
return rc;
}
}
/* On rend la structure invalide le temps de la suppression de valeur */
/*
RootDesc->Valid = FALSE;
/* Suppression du noeud correspondant à la valeur de référence */
/*
rc = ND_Value_Remove (Root, Reference_Value, Removed_Value);
if (rc != NDS_OK)
{
sprintf (DS_Error_Msg, "Error DS_Value_Remove : unable to remove a value from the data structure");
DS_Error_Print ();
if (!DS_ERROR(rc)) RootDesc->Valid = TRUE;
return rc;
}
/* On rend la structure à nouveau valide */
/*
RootDesc->Valid = TRUE;
return DSS_OK;
}
/*----------------------------------------------------------------------------*/
/* Désallocation d'une valeur d'une structure de données */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure de données */
/* (I) Value : pointeur sur la valeur à désallouer */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Value_Free_I ( NDT_Root * Root, void * Value )
{
return ND_Value_Free (Root, Value);
}
/*----------------------------------------------------------------------------*/
/* Allocation de mémoire pour une structure de données : */
/*----------------------------------------------------------------------------*/
/* (O) Ptr : adresse du pointeur sur la zone de données allouée */
/* (I) Root : pointeur sur la racine de la structure de données */
/* (I) Size : taille mémoire à allouer */
/*----------------------------------------------------------------------------*/
DST_Status DS_Alloc_I( void **Ptr_Ptr, NDT_Root *Root_Ptr, size_t Size)
{
return( DS_DataStruct_Alloc( Ptr_Ptr, Size, Root_Ptr->User_Ptr));
}
/*----------------------------------------------------------------------------*/
/* Désallocation d'une ressource pour une structure de données : */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure de données */
/* (I) Ptr : pointeur sur la zone à désallouer */
/*----------------------------------------------------------------------------*/
DST_Status DS_Free_I( NDT_Root *Root, void *Ptr)
{
// return DS_DataStruct_Free (Ptr, Root->User);
}
/*----------------------------------------------------------------------------*/
/* FONCTIONS OPTIMISATION MOYENNE (DS_MODE = 1) */
/*----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------*/
/* Ouverture d'une instance de la librairie */
/*----------------------------------------------------------------------------*/
/* (I) Instance : numéro de l'instance de la librairie */
/* (I) Context : nom du contexte */
/* (I) Debug_Mode : mode d'affichage des messages d'erreur */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Library_Open_L ( int Instance, const char * Context, DST_Flags Debug_Mode )
{
return DS_Library_Open_I (Instance, Context, Debug_Mode);
}
/*----------------------------------------------------------------------------*/
/* Fermeture de l'instance de la librairie */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Library_Close_L ( void )
{
return DS_Library_Close_I ();
}
/*----------------------------------------------------------------------------*/
/* Définition de la sortie standard des messages d'erreur de la librairie */
/*----------------------------------------------------------------------------*/
/* (I) Out : flux de sortie des messages d'erreur */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Library_Stderr_Set_L ( FILE * Out )
{
return DS_Library_Stderr_Set_I (Out);
}
/*----------------------------------------------------------------------------*/
/* Création / ouverture d'une structure de données */
/*----------------------------------------------------------------------------*/
/* (I) DS_Name : nom de la structure */
/* (O) Root : adresse du pointeur sur la racine de la structure */
/* (I) Type : type de la structure de données */
/* (I) Manager_FileName : nom du fichier qui définit les fonctions manager */
/* (I) Segment_Size : taille ds segments du heap sous-jacent */
/* (I) Open_Mode : mode d'ouverture de la structure */
/* (I) Own_Values : indique si la structure possède ses valeurs */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_DataStruct_Open_L ( const char * DS_Name, NDT_Root ** Root, \
NDT_DataStruct_Type Type, const char * Manager_FileName, \
size_t Segment_Size, DST_Flags Open_Mode, int Own_Values )
{
return DS_DataStruct_Open_I (DS_Name, Root, Type, Manager_FileName, Segment_Size, Open_Mode, Own_Values);
}
/*----------------------------------------------------------------------------*/
/* Verrouillage d'une structure de données */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure */
/* (I) Lock_Mode : type de verrou à poser sur la structure */
/* (O) Locked : verrou effectif (TRUE ou FALSE) */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_DataStruct_Lock_L ( NDT_Root * Root, DST_Flags Lock_Mode, int * Locked )
{
return DS_DataStruct_Lock_I (Root, Lock_Mode, Locked);
}
/*----------------------------------------------------------------------------*/
/* Déverrouillage d'une structure de données */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_DataStruct_Unlock_L ( NDT_Root * Root )
{
return DS_DataStruct_Unlock_I (Root);
}
/*----------------------------------------------------------------------------*/
/* Fermeture d'une structure de données */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure de données à fermer */
/* (I) Close_Mode : mode de fermeture de la structure (destruction ou non) */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_DataStruct_Close_L ( NDT_Root * Root, DST_Flags Close_Mode )
{
return DS_DataStruct_Close_I (Root, Close_Mode);
}
/*----------------------------------------------------------------------------*/
/* Affiche les informations d'une structure de données */
/*----------------------------------------------------------------------------*/
/* (I) Root: pointeur sur la racine de la structure de données */
/* (I) Out : flux de sortie de l'affichage */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_DataStruct_Info_Print_L ( NDT_Root * Root, FILE * Out )
{
DST_Status rc;
int Locked;
/* Verrouillage de la data structure en lecture */
/*
rc = DS_DataStruct_Lock_I (Root, SMD_READ, &Locked);
if (rc != DSS_OK)
{
sprintf (DS_Error_Msg, "Error DS_DataStruct_Info_Print : unable to lock the data structure for reading");
DS_Error_Print ();
return rc;
}
rc = DS_DataStruct_Info_Print_I (Root, Out);
/* Déverrouillage de la data structure si besoin */
/*
if (Locked == TRUE) DS_DataStruct_Unlock_I (Root);
return rc;
}
/*----------------------------------------------------------------------------*/
/* Réorganisation d'une structure de données */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure de données à réorganiser */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_DataStruct_Reorg_L ( NDT_Root * Root )
{
DST_Status rc;
int Locked;
/* Verrouillage de la data structure en écriture */
/*
rc = DS_DataStruct_Lock_I (Root, SMD_WRITE, &Locked);
if (rc != DSS_OK)
{
sprintf (DS_Error_Msg, "Error DS_DataStruct_Reorg : unable to lock the data structure for writing");
DS_Error_Print ();
return rc;
}
rc = DS_DataStruct_Reorg_I (Root);
/* Déverrouillage de la data structure si besoin */
/*
if (Locked == TRUE) DS_DataStruct_Unlock_I (Root);
return rc;
}
/*----------------------------------------------------------------------------*/
/* Parcours de tous les noeuds d'une structure de données et exécution d'une */
/* commande sur chacun d'eux */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure de données à parcourir*/
/* (I) Command : commande à exécuter sur chaque noeud traversé */
/* (I) Data : pointeur de données utilisateur */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_DataStruct_Traverse_L ( NDT_Root * Root, NDT_Command Command, void * Data )
{
DST_Status rc;
SMT_Flags Lock_Mode;
int Locked;
/* Définition du mode de verrouillage de la data structure selon le type de commande */
/*
switch ((int)Command)
{
case NDD_CMD_PRINT_VALUE:
Lock_Mode = SMD_READ;
break;
case NDD_CMD_DELETE_VALUE:
default:
Lock_Mode = SMD_WRITE;
break;
}
/* Verrouillage de la data structure */
/*
rc = DS_DataStruct_Lock_I (Root, Lock_Mode, &Locked);
if (rc != DSS_OK)
{
sprintf (DS_Error_Msg, "Error DS_DataStruct_Traverse : unable to lock the data structure for %s",
Lock_Mode == SMD_WRITE ? "writing" : "reading");
DS_Error_Print ();
return rc;
}
rc = DS_DataStruct_Traverse_I (Root, Command, Data);
/* Déverrouillage de la data structure si besoin */
/*
if (Locked == TRUE) DS_DataStruct_Unlock_I (Root);
return rc;
}
/*----------------------------------------------------------------------------*/
/* Conversion d'une structure de données d'un type en un autre */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure de données */
/* (I) Target_Type : type de structure cible */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_DataStruct_Convert_L ( NDT_Root * Root, NDT_DataStruct_Type Target_Type )
{
DST_Status rc;
int Locked;
/* Verrouillage de la data structure en écriture */
/*
rc = DS_DataStruct_Lock_I (Root, SMD_WRITE, &Locked);
if (rc != DSS_OK)
{
sprintf (DS_Error_Msg, "Error DS_DataStruct_Convert : unable to lock the data structure for writing");
DS_Error_Print ();
return rc;
}
rc = DS_DataStruct_Convert_I (Root, Target_Type);
/* Déverrouillage de la data structure si besoin */
/*
if (Locked == TRUE) DS_DataStruct_Unlock_I (Root);
return rc;
}
/*----------------------------------------------------------------------------*/
/* Affichage d'une structure de données */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure de données à afficher */
/* (I) Out : flux de sortie */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_DataStruct_Print_L ( NDT_Root * Root, FILE * Out )
{
return DS_DataStruct_Traverse_L (Root, NDD_CMD_PRINT_VALUE, Out);
}
/*----------------------------------------------------------------------------*/
/* Fonction de vérification / réparation d'une structure de données */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure */
/* (O) Nb_Detected : pointeur sur le nombre d'erreurs détectées */
/* (O) Nb_Corrected : pointeur sur le nombre d'erreurs corrigées */
/* (I) Out : flux de sortie du rapport */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_DataStruct_Check_L ( NDT_Root * Root, int * Nb_Detected, int * Nb_Corrected, FILE * Out )
{
return DS_DataStruct_Check_I (Root, Nb_Detected, Nb_Corrected, Out);
}
/*----------------------------------------------------------------------------*/
/* Affiche la structure de données */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure */
/* (I) Out : flux de sortie */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_DataStruct_Dump_L ( NDT_Root * Root, FILE * Out )
{
DST_Status rc;
int Locked;
/* Verrouillage de la data structure en lecture */
/*
rc = DS_DataStruct_Lock_I (Root, SMD_READ, &Locked);
if (rc != DSS_OK)
{
sprintf (DS_Error_Msg, "Error DS_DataStruct_Dump : unable to lock the data structure for reading");
DS_Error_Print ();
return rc;
}
rc = DS_DataStruct_Dump_I (Root, Out);
/* Déverrouillage de la data structure si besoin */
/*
if (Locked == TRUE) DS_DataStruct_Unlock_I (Root);
return rc;
}
/*----------------------------------------------------------------------------*/
/* Récupération du premier noeud d'une structure */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine dont on cherche le premier noeud */
/* (O) Node : pointeur sur le noeud à récupérer */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Node_First_Get_L ( NDT_Root * Root, NDT_Node ** Node )
{
DST_Status rc;
int Locked;
/* Verrouillage de la data structure en lecture */
/*
rc = DS_DataStruct_Lock_I (Root, SMD_READ, &Locked);
if (rc != DSS_OK)
{
sprintf (DS_Error_Msg, "Error DS_Node_First_Get : unable to lock the data structure for reading");
DS_Error_Print ();
return rc;
}
rc = DS_Node_First_Get_I (Root, Node);
/* Déverrouillage de la data structure si besoin */
/*
if (Locked == TRUE) DS_DataStruct_Unlock_I (Root);
return rc;
}
/*----------------------------------------------------------------------------*/
/* Récupération du dernier noeud d'une structure */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine dont on cherche le dernier noeud */
/* (O) Node : pointeur sur le noeud à récupérer */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Node_Last_Get_L ( NDT_Root * Root, NDT_Node ** Node )
{
DST_Status rc;
int Locked;
/* Verrouillage de la data structure en lecture */
/*
rc = DS_DataStruct_Lock_I (Root, SMD_READ, &Locked);
if (rc != DSS_OK)
{
sprintf (DS_Error_Msg, "Error DS_Node_Last_Get : unable to lock the data structure for reading");
DS_Error_Print ();
return rc;
}
rc = DS_Node_Last_Get_I (Root, Node);
/* Déverrouillage de la data structure si besoin */
/*
if (Locked == TRUE) DS_DataStruct_Unlock_I (Root);
return rc;
}
/*----------------------------------------------------------------------------*/
/* Récupération du noeud suivant */
/*----------------------------------------------------------------------------*/
/* (I) Node : pointeur sur le noeud dont on cherche le suivant */
/* (O) Next_Node : pointeur sur le noeud suivant */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Node_Next_Get_L ( NDT_Node * Node, NDT_Node ** Next_Node )
{
DST_Status rc;
int Locked;
/* Verrouillage de la data structure en lecture */
/*
rc = DS_DataStruct_Lock_I (Node->Root, SMD_READ, &Locked);
if (rc != DSS_OK)
{
sprintf (DS_Error_Msg, "Error DS_Node_Next_Get : unable to lock the data structure for reading");
DS_Error_Print ();
return rc;
}
rc = DS_Node_Next_Get_I (Node, Next_Node);
/* Déverrouillage de la data structure si besoin */
/*
if (Locked == TRUE) DS_DataStruct_Unlock_I (Node->Root);
return rc;
}
/*----------------------------------------------------------------------------*/
/* Récupération du noeud précédant */
/*----------------------------------------------------------------------------*/
/* (I) Node : pointeur sur le noeud dont on cherche le précédant */
/* (O) Prev_Node : pointeur sur le noeud précédant */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Node_Previous_Get_L ( NDT_Node * Node, NDT_Node ** Prev_Node )
{
DST_Status rc;
int Locked;
/* Verrouillage de la data structure en lecture */
/*
rc = DS_DataStruct_Lock_I (Node->Root, SMD_READ, &Locked);
if (rc != DSS_OK)
{
sprintf (DS_Error_Msg, "Error DS_Node_Previous_Get : unable to lock the data structure for reading");
DS_Error_Print ();
return rc;
}
rc = DS_Node_Previous_Get_I (Node, Prev_Node);
/* Déverrouillage de la data structure si besoin */
/*
if (Locked == TRUE) DS_DataStruct_Unlock_I (Node->Root);
return rc;
}
/*----------------------------------------------------------------------------*/
/* Ajout d'un noeud à une structure de données */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure de données */
/* (I) Node : pointeur sur le noeud à ajouter */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Node_Add_L ( NDT_Root * Root, NDT_Node * Node )
{
DST_Status rc;
int Locked;
/* Verrouillage de la data structure en écriture */
/*
rc = DS_DataStruct_Lock_I (Root, SMD_WRITE, &Locked);
if (rc != DSS_OK)
{
sprintf (DS_Error_Msg, "Error DS_Node_Add : unable to lock the data structure for writing");
DS_Error_Print ();
return rc;
}
rc = DS_Node_Add_I (Root, Node);
/* Déverrouillage de la data structure si besoin */
/*
if (Locked == TRUE) DS_DataStruct_Unlock_I (Root);
return rc;
}
/*----------------------------------------------------------------------------*/
/* Suppression d'un noeud dans une structure de données */
/*----------------------------------------------------------------------------*/
/* (I) Node : pointeur sur le noeud à supprimer */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Node_Remove_L ( NDT_Node * Node )
{
DST_Status rc;
int Locked;
NDT_Root * Root = Node->Root;
/* Verrouillage de la data structure en écriture */
/*
rc = DS_DataStruct_Lock_I (Root, SMD_WRITE, &Locked);
if (rc != DSS_OK)
{
sprintf (DS_Error_Msg, "Error DS_Node_Remove : unable to lock the data structure for writing");
DS_Error_Print ();
return rc;
}
rc = DS_Node_Remove_I (Node);
/* Déverrouillage de la data structure si besoin */
/*
if (Locked == TRUE) DS_DataStruct_Unlock_I (Root);
return rc;
}
/*----------------------------------------------------------------------------*/
/* Recherche un noeud dans un arbre et retourne le pointeur sur le noeud */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de l'abre */
/* (O) Node : adresse du pointeur sur le noeud à récuperer */
/* (I) Value : pointeur sur la valeur à rechercher */
/* (I) Data : pointeur de données */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Node_Find_L ( NDT_Root * Root, NDT_Node ** Node, void * Value, void * Data )
{
DST_Status rc;
int Locked;
/* Verrouillage de la data structure en lecture */
/*
rc = DS_DataStruct_Lock_I (Root, SMD_READ, &Locked);
if (rc != DSS_OK)
{
sprintf (DS_Error_Msg, "Error DS_Node_Find : unable to lock the data structure for reading");
DS_Error_Print ();
return rc;
}
rc = DS_Node_Find_I (Root, Node, Value, Data);
/* Déverrouillage de la data structure si besoin */
/*
if (Locked == TRUE) DS_DataStruct_Unlock_I (Root);
return rc;
}
/*----------------------------------------------------------------------------*/
/* Allocation d'une valeur d'une structure de données */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure de données */
/* (O) Value : adresse d'un pointeur sur la valeur à allouer */
/* (I) ... : arguments relatifs à l'allocation de la valeur */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Value_Alloc_L ( NDT_Root * Root, void ** Value, ... )
{
DST_Status rc;
va_list Args;
/* Récupération des arguments pour l'allocation de la valeur */
/*
va_start (Args, Value);
/* Appel du manager */
/*
rc = ND_Manager_Exec (Root->Manager, NDD_CMD_MAKE_VALUE, Root, Value, Args);
va_end (Args);
return rc;
}
/*----------------------------------------------------------------------------*/
/* Ajout d'une valeur à une structure de données */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure de données */
/* (I) Value : pointeur sur la valeur à ajouter à la structure de données */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Value_Add_L ( NDT_Root * Root, void * Value )
{
DST_Status rc;
int Locked;
/* Verrouillage de la data structure en écriture */
/*
rc = DS_DataStruct_Lock_I (Root, SMD_WRITE, &Locked);
if (rc != DSS_OK)
{
sprintf (DS_Error_Msg, "Error DS_Value_Add : unable to lock the data structure for writing");
DS_Error_Print ();
return rc;
}
/* Ajout de la valeur */
/*
rc = DS_Value_Add_I (Root, Value);
/* Déverrouillage de la data structure si besoin */
/*
if (Locked == TRUE) DS_DataStruct_Unlock_I (Root);
return rc;
}
/*----------------------------------------------------------------------------*/
/* Suppression du premier noeud correspondant à une valeur donnée */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure de données */
/* (I) Reference_Value : pointeur sur la valeur de référence */
/* (I) Removed_Value : adresse d'un pointeur sur la valeur supprimée */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Value_Remove_L ( NDT_Root * Root, void * Reference_Value, void ** Removed_Value )
{
DST_Status rc;
int Locked;
/* Verrouillage de la data structure en écriture */
/*
rc = DS_DataStruct_Lock_I (Root, SMD_WRITE, &Locked);
if (rc != DSS_OK)
{
sprintf (DS_Error_Msg, "Error DS_Value_Remove : unable to lock the data structure for writing");
DS_Error_Print ();
return rc;
}
rc = DS_Value_Remove_I (Root, Reference_Value, Removed_Value);
/* Déverrouillage de la data structure si besoin */
/*
if (Locked == TRUE) DS_DataStruct_Unlock_I (Root);
return DSS_OK;
}
/*----------------------------------------------------------------------------*/
/* Désallocation d'une valeur d'une structure de données */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure de données */
/* (I) Value : pointeur sur la valeur à désallouer */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Value_Free_L ( NDT_Root * Root, void * Value )
{
return ND_Value_Free (Root, Value);
}
/*----------------------------------------------------------------------------*/
/* Allocation de mémoire pour une structure de données : */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure de données */
/* (I) Size : taille mémoire à allouer */
/* (O) Ptr : adresse du pointeur sur la zone de données allouée */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Alloc_L ( NDT_Root * Root, size_t Size, void ** Ptr )
{
return DS_DataStruct_Alloc (Size, Ptr, Root->User);
}
/*----------------------------------------------------------------------------*/
/* Désallocation d'une ressource pour une structure de données : */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure de données */
/* (I) Ptr : pointeur sur la zone à désallouer */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Free_L ( NDT_Root * Root, void * Ptr )
{
return DS_DataStruct_Free (Ptr, Root->User);
}
/*----------------------------------------------------------------------------*/
/* FONCTIONS SECURISEES (DS_MODE = 0) */
/*----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------*/
/* Ouverture d'une instance de la librairie */
/*----------------------------------------------------------------------------*/
/* (I) Instance : numéro de l'instance de la librairie */
/* (I) Context : nom du contexte */
/* (I) Debug_Mode : mode d'affichage des messages d'erreur */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Library_Open_CL ( int Instance, const char * Context, DST_Flags Debug_Mode )
{
return DS_Library_Open_I (Instance, Context, Debug_Mode );
}
/*----------------------------------------------------------------------------*/
/* Fermeture de l'instance de la librairie */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Library_Close_CL ( void )
{
return DS_Library_Close_I ();
}
/*----------------------------------------------------------------------------*/
/* Définition de la sortie standard des messages d'erreur de la librairie */
/*----------------------------------------------------------------------------*/
/* (I) Out : flux de sortie des messages d'erreur */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Library_Stderr_Set_CL ( FILE * Out )
{
return DS_Library_Stderr_Set_I (Out);
}
/*----------------------------------------------------------------------------*/
/* Création / ouverture d'une structure de données */
/*----------------------------------------------------------------------------*/
/* (I) DS_Name : nom de la structure */
/* (O) Root : adresse du pointeur sur la racine de la structure */
/* (I) Type : type de la structure de données */
/* (I) Manager_FileName : nom du fichier qui définit les fonctions manager */
/* (I) Segment_Size : taille ds segments du heap sous-jacent */
/* (I) Open_Mode : mode d'ouverture de la structure */
/* (I) Own_Values : indique si la structure possède ses valeurs */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_DataStruct_Open_CL ( const char * DS_Name, NDT_Root ** Root, \
NDT_DataStruct_Type Type, const char * Manager_FileName, \
size_t Segment_Size, DST_Flags Open_Mode, int Own_Values )
{
if (!DS_Name)
{
sprintf (DS_Error_Msg, "Error DS_DataStruct_Open : the data structure name is undefined");
DS_Error_Print ();
return DSS_ERRAPI;
}
if (!Root)
{
sprintf (DS_Error_Msg, "Error DS_DataStruct_Open : the root address is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
if (Open_Mode & (DSD_CREATE | DSD_NEW) && !Manager_FileName)
{
sprintf (DS_Error_Msg, "Error DS_DataStruct_Open : the manager file name must be defined in creation mode");
DS_Error_Print ();
return DSS_ERRAPI;
}
return DS_DataStruct_Open_I (DS_Name, Root, Type, Manager_FileName, Segment_Size, Open_Mode, Own_Values);
}
/*----------------------------------------------------------------------------*/
/* Verrouillage d'une structure de données */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure */
/* (I) Lock_Mode : type de verrou à poser sur la structure */
/* (O) Locked : verrou effectif (TRUE ou FALSE) */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_DataStruct_Lock_CL ( NDT_Root * Root, DST_Flags Lock_Mode, int * Locked )
{
if (!Root)
{
sprintf (DS_Error_Msg, "Error DS_DataStruct_Lock : the structure root is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
if (!Locked)
{
sprintf (DS_Error_Msg, "Error DS_DataStruct_Lock : the lock indicator address is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
return DS_DataStruct_Lock_I (Root, Lock_Mode, Locked);
}
/*----------------------------------------------------------------------------*/
/* Déverrouillage d'une structure de données */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_DataStruct_Unlock_CL ( NDT_Root * Root )
{
if (!Root)
{
sprintf (DS_Error_Msg, "Error DS_DataStruct_Unlock : the structure root is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
return DS_DataStruct_Unlock_I (Root);
}
/*----------------------------------------------------------------------------*/
/* Fermeture d'une structure de données */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure de données à fermer */
/* (I) Close_Mode : mode de fermeture de la structure (destruction ou non) */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_DataStruct_Close_CL ( NDT_Root * Root, DST_Flags Close_Mode )
{
if (!Root)
{
sprintf (DS_Error_Msg, "Error DS_DataStruct_Close : the structure root is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
return DS_DataStruct_Close_I (Root, Close_Mode);
}
/*----------------------------------------------------------------------------*/
/* Affiche les informations d'une structure de données */
/*----------------------------------------------------------------------------*/
/* (I) Root: pointeur sur la racine de la structure de données */
/* (I) Out : flux de sortie de l'affichage */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_DataStruct_Info_Print_CL ( NDT_Root * Root, FILE * Out )
{
if (!Root)
{
sprintf (DS_Error_Msg, "Error DS_DataStruct_Info_Print : the structure root is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
if (!Out)
{
sprintf (DS_Error_Msg, "Error DS_DataStruct_Info_Print : the out stream is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
return DS_DataStruct_Info_Print_L (Root, Out);
}
/*----------------------------------------------------------------------------*/
/* Réorganisation d'une structure de données */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure de données à réorganiser */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_DataStruct_Reorg_CL ( NDT_Root * Root )
{
if (!Root)
{
sprintf (DS_Error_Msg, "Error DS_DataStruct_Reorg : the structure root is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
return DS_DataStruct_Reorg_L (Root);
}
/*----------------------------------------------------------------------------*/
/* Parcours de tous les noeuds d'une structure de données et exécution d'une */
/* commande sur chacun d'eux */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure de données à parcourir*/
/* (I) Command : commande à exécuter sur chaque noeud traversé */
/* (I) Data : pointeur de données utilisateur */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_DataStruct_Traverse_CL ( NDT_Root * Root, NDT_Command Command, void * Data )
{
if (!Root)
{
sprintf (DS_Error_Msg, "Error DS_DataStruct_Traverse : the structure root is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
return DS_DataStruct_Traverse_L (Root, Command, Data);
}
/*----------------------------------------------------------------------------*/
/* Conversion d'une structure de données d'un type en un autre */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure de données */
/* (I) Target_Type : type de structure cible */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_DataStruct_Convert_CL ( NDT_Root * Root, NDT_DataStruct_Type Target_Type )
{
if (!Root)
{
sprintf (DS_Error_Msg, "Error DS_DataStruct_Convert : the structure root is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
return DS_DataStruct_Convert_L (Root, Target_Type);
}
/*----------------------------------------------------------------------------*/
/* Affichage d'une structure de données */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure de données à afficher */
/* (I) Out : flux de sortie */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_DataStruct_Print_CL ( NDT_Root * Root, FILE * Out )
{
return DS_DataStruct_Traverse_CL (Root, NDD_CMD_PRINT_VALUE, Out);
}
/*----------------------------------------------------------------------------*/
/* Fonction de vérification / réparation d'une structure de données */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure */
/* (O) Nb_Detected : pointeur sur le nombre d'erreurs détectées */
/* (O) Nb_Corrected : pointeur sur le nombre d'erreurs corrigées */
/* (I) Out : flux de sortie du rapport */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_DataStruct_Check_CL ( NDT_Root * Root, int * Nb_Detected, int * Nb_Corrected, FILE * Out )
{
if (!Root)
{
sprintf (DS_Error_Msg, "Error : the structure root is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
if (!Nb_Detected || !Nb_Corrected)
{
sprintf (DS_Error_Msg, "Error : one of the error number address is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
if (!Out)
{
sprintf (DS_Error_Msg, "Error : the out stream is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
return DS_DataStruct_Check_I (Root, Nb_Detected, Nb_Corrected, Out);
}
/*----------------------------------------------------------------------------*/
/* Affiche la structure de données */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure */
/* (I) Out : flux de sortie */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_DataStruct_Dump_CL ( NDT_Root * Root, FILE * Out )
{
if (!Root)
{
sprintf (DS_Error_Msg, "Error DS_DataStruct_Dump : the structure root is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
if (!Out)
{
sprintf (DS_Error_Msg, "Error DS_DataStruct_Dump : the out stream is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
return DS_DataStruct_Dump_L (Root, Out);
}
/*----------------------------------------------------------------------------*/
/* Récupération du premier noeud d'une structure */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine dont on cherche le premier noeud */
/* (O) First_Node : adresse d'un pointeur sur le premier noeud à récupérer */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Node_First_Get_CL ( NDT_Root * Root, NDT_Node ** First_Node )
{
if (!Root)
{
sprintf (DS_Error_Msg, "Error DS_Node_First_Get : the structure root is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
if (!First_Node)
{
sprintf (DS_Error_Msg, "Error DS_Node_First_Get : the first node address is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
return DS_Node_First_Get_L (Root, First_Node);
}
/*----------------------------------------------------------------------------*/
/* Récupération du dernier noeud d'une structure */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la data structure */
/* (O) Last_Node : adresse d'un pointeur sur le dernier noeud */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Node_Last_Get_CL ( NDT_Root * Root, NDT_Node ** Last_Node )
{
if (!Root)
{
sprintf (DS_Error_Msg, "Error DS_Node_Last_Get : the structure root is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
if (!Last_Node)
{
sprintf (DS_Error_Msg, "Error DS_Node_Last_Get : the last node address is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
return DS_Node_Last_Get_L (Root, Last_Node);
}
/*----------------------------------------------------------------------------*/
/* Récupération du noeud suivant */
/*----------------------------------------------------------------------------*/
/* (I) Node : pointeur sur le noeud dont on cherche le suivant */
/* (O) Next_Node : pointeur sur le noeud suivant */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Node_Next_Get_CL ( NDT_Node * Node, NDT_Node ** Next_Node )
{
if (!Node)
{
sprintf (DS_Error_Msg, "Error DS_Node_Next_Get : the node is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
if (!Next_Node)
{
sprintf (DS_Error_Msg, "Error DS_Node_Next_Get : the next node address is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
return DS_Node_Next_Get_L (Node, Next_Node);
}
/*----------------------------------------------------------------------------*/
/* Récupération du noeud précédant */
/*----------------------------------------------------------------------------*/
/* (I) Node : pointeur sur le noeud dont on cherche le précédant */
/* (O) Prev_Node : pointeur sur le noeud précédant */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Node_Previous_Get_CL ( NDT_Node * Node, NDT_Node ** Prev_Node )
{
if (!Node)
{
sprintf (DS_Error_Msg, "Error DS_Node_Previous_Get : the node is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
if (!Prev_Node)
{
sprintf (DS_Error_Msg, "Error DS_Node_Previous_Get : the previous node address is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
return DS_Node_Previous_Get_L (Node, Prev_Node);
}
/*----------------------------------------------------------------------------*/
/* Ajout d'un noeud à une structure de données */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure de données */
/* (I) Node : pointeur sur le noeud à ajouter */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Node_Add_CL ( NDT_Root * Root, NDT_Node * Node )
{
if (!Root)
{
sprintf (DS_Error_Msg, "Error DS_Node_Add : the structure root is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
if (!Node)
{
sprintf (DS_Error_Msg, "Error DS_Node_Add : the node is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
return DS_Node_Add_L (Root, Node);
}
/*----------------------------------------------------------------------------*/
/* Suppression d'un noeud dans une structure de données */
/*----------------------------------------------------------------------------*/
/* (I) Node : pointeur sur le noeud à supprimer */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Node_Remove_CL ( NDT_Node * Node )
{
if (!Node)
{
sprintf (DS_Error_Msg, "Error DS_Node_Remove : the node is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
return DS_Node_Remove_L (Node);
}
/*----------------------------------------------------------------------------*/
/* Recherche un noeud dans un arbre et retourne le pointeur sur le noeud */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de l'abre */
/* (O) Node : adresse du pointeur sur le noeud à récuperer */
/* (I) Value : pointeur sur la valeur à rechercher */
/* (I) Data : pointeur de données */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Node_Find_CL ( NDT_Root * Root, NDT_Node ** Node, void * Value, void * Data )
{
if (!Root)
{
sprintf (DS_Error_Msg, "Error DS_Node_Find : the structure root is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
if (!Node)
{
sprintf (DS_Error_Msg, "Error DS_Node_Find : the node address is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
if (!Value)
{
sprintf (DS_Error_Msg, "Error DS_Node_Find : the value is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
return DS_Node_Find_L (Root, Node, Value, Data);
}
/*----------------------------------------------------------------------------*/
/* Allocation d'une valeur d'une structure de données */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure de données */
/* (O) Value : adresse d'un pointeur sur la valeur à allouer */
/* (I) ... : arguments relatifs à l'allocation de la valeur */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Value_Alloc_CL ( NDT_Root * Root, void ** Value, ... )
{
DST_Status rc;
va_list Args;
if (!Root)
{
sprintf (DS_Error_Msg, "Error DS_Value_Alloc : the structure root is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
if (!Value)
{
sprintf (DS_Error_Msg, "Error DS_Value_Alloc : the value address is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
/* Récupération des arguments pour l'allocation de la valeur */
/*
va_start (Args, Value);
/* Appel du manager */
/*
rc = ND_Manager_Exec (Root->Manager, NDD_CMD_MAKE_VALUE, Root, Value, Args);
va_end (Args);
return rc;
}
/*----------------------------------------------------------------------------*/
/* Ajout d'une valeur à une structure de données */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure de données */
/* (I) Value : pointeur sur la valeur à ajouter à la structure de données */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Value_Add_CL ( NDT_Root * Root, void * Value )
{
if (!Root)
{
sprintf (DS_Error_Msg, "Error DS_Value_Add : the structure root is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
if (!Value)
{
sprintf (DS_Error_Msg, "Error DS_Value_Add : the value is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
return DS_Value_Add_L (Root, Value);
}
/*----------------------------------------------------------------------------*/
/* Suppression du premier noeud correspondant à une valeur donnée */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure de données */
/* (I) Reference_Value : pointeur sur la valeur de référence */
/* (I) Removed_Value : adresse d'un pointeur sur la valeur supprimée */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Value_Remove_CL ( NDT_Root * Root, void * Reference_Value, void ** Removed_Value )
{
if (!Root)
{
sprintf (DS_Error_Msg, "Error DS_Value_Remove : the structure root is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
if (!Reference_Value)
{
sprintf (DS_Error_Msg, "Error DS_Value_Remove : the reference value is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
if (!Removed_Value)
{
sprintf (DS_Error_Msg, "Error DS_Value_Remove : the removed value adress is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
return DS_Value_Remove_L (Root, Reference_Value, Removed_Value);
}
/*----------------------------------------------------------------------------*/
/* Désallocation d'une valeur d'une structure de données */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure de données */
/* (I) Value : pointeur sur la valeur à désallouer */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Value_Free_CL ( NDT_Root * Root, void * Value )
{
if (!Root)
{
sprintf (DS_Error_Msg, "Error DS_Value_Free : the structure root is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
if (!Value)
{
sprintf (DS_Error_Msg, "Error DS_Value_Free : the value is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
return DS_Value_Free_L (Root, Value);
}
/*----------------------------------------------------------------------------*/
/* Allocation de mémoire pour une structure de données : */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure de données */
/* (I) Size : taille mémoire à allouer */
/* (O) Ptr : adresse du pointeur sur la zone de données allouée */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Alloc_CL ( NDT_Root * Root, size_t Size, void ** Ptr )
{
if (!Root)
{
sprintf (DS_Error_Msg, "Error DS_Alloc : the structure root is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
if (Size <= 0)
{
sprintf (DS_Error_Msg, "Error DS_Alloc : the allocation size must be > 0");
DS_Error_Print ();
return DSS_ERRAPI;
}
if (!Ptr)
{
sprintf (DS_Error_Msg, "Error DS_Alloc : the data pointer address is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
return DS_Alloc_L (Root, Size, Ptr);
}
/*----------------------------------------------------------------------------*/
/* Désallocation d'une ressource pour une structure de données : */
/*----------------------------------------------------------------------------*/
/* (I) Root : pointeur sur la racine de la structure de données */
/* (I) Ptr : pointeur sur la zone à désallouer */
/*----------------------------------------------------------------------------*/
/*
DST_Status DS_Free_CL ( NDT_Root * Root, void * Ptr )
{
if (!Root)
{
sprintf (DS_Error_Msg, "Error DS_Free : the structure root is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
if (!Ptr)
{
sprintf (DS_Error_Msg, "Error DS_Free : the data pointer is null");
DS_Error_Print ();
return DSS_ERRAPI;
}
return DS_Free_L (Root, Ptr);
}
/*----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------*/
/* FONCTIONS PRIVEES */
/*----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------*/
/* Teste si une data structure a déjà été ouverte par le processus courant : */
/*----------------------------------------------------------------------------*/
/* (I) DS_Name : nom de la data structure */
/* (O) Root : adresse du pointeur sur la racine de la structure */
/*----------------------------------------------------------------------------*/
DST_Status DS_DataStruct_IsOpen( NDT_Root **Root_Ptr_Ptr, char *DS_Name)
{
NDT_Status nd_status;
DST_DataStruct to_find, *found_ptr;
to_find.Name = DS_Name;
if( ( nd_status = ND_DataStruct_Value_Find( (void **)&found_ptr, OpenedDS_List, &to_find)) != NDS_OK)
{
LG_LOG_ERROR_2( "Can't lookup for opened data structure: [%s], status: (%d)", DS_Name, nd_status);
return( DSS_KO);
}
else
{
if( found_ptr == NULL)
{
LG_LOG_TRACE_1( LGD_LOG_LEVEL_DEFAULT, "Data structure: [%s] not found", DS_Name);
*Root_Ptr_Ptr = NULL;
}
else
{
LG_LOG_TRACE_1( LGD_LOG_LEVEL_DEFAULT, "Data structure: [%s] found", DS_Name);
*Root_Ptr_Ptr = found_ptr->Root_Ptr;
}
}
return( DSS_OK);
}
/*----------------------------------------------------------------------------*/
/* Fonction d'allocation attachée à une structure de données : */
/*----------------------------------------------------------------------------*/
DST_Status DS_DataStruct_Alloc( void **Ptr_Ptr, size_t Size, void *Data_Ptr)
{
DST_Status status;
SMT_Status sm_status;
SMT_Heap *heap_ptr;
int locked;
DST_RootDesc *RootDesc = (DST_RootDesc *)Data_Ptr;
// char *heap_name = RootDesc->Heap_Name;
if( ( sm_status = SM_Heap_IsOpen( RootDesc->Heap_Name, &heap_ptr)) != SMS_YES)
{
LG_LOG_ERROR_1( "The data structure heap: [%s] is not open", RootDesc->Heap_Name);
return( DSS_OK);
}
/* Verrouillage du heap en écriture */
if( ( sm_status = SM_Heap_Lock( heap_ptr, SMD_WRITE, &locked)) != SMS_OK)
{
LG_LOG_ERROR_2( "Unable to lock the data structure heap: [%s] for writing, status: (%d)", RootDesc->Heap_Name, sm_status);
return( DSS_OK);
}
/* Allocation du chunk */
if( ( sm_status = SM_Chunk_Alloc( heap_ptr, Size, Ptr_Ptr)) != SMS_OK)
{
LG_LOG_ERROR_3( "Unable to alloc size: (%d) in the heap: [%s] for writing, status: (%d)", Size, RootDesc->Heap_Name, sm_status);
if( locked == TRUE) SM_Heap_Unlock( heap_ptr);
return( DSS_KO);
}
/* Déverrouillage de la data structure si besoin */
if( locked == TRUE)
{
if( ( sm_status = SM_Heap_Unlock( heap_ptr)) != SMS_OK)
{
LG_LOG_ERROR_2( "Unable to unlock the data structure heap: [%s], status: (%d)", heap_ptr->Name, sm_status);
}
}
return( DSS_OK);
}
/*----------------------------------------------------------------------------*/
/* Fonction de désallocation attachée à une structure de données : */
/*----------------------------------------------------------------------------*/
DST_Status DS_DataStruct_Free( void *Ptr, void *Data_Ptr)
{
DST_RootDesc *RootDesc_Ptr = (DST_RootDesc *)Data_Ptr;
char *Heap_Name = RootDesc_Ptr->Heap_Name;
DST_Status status;
SMT_Status sm_status;
SMT_Heap *heap_ptr;
int locked;
if( ( sm_status = SM_Heap_IsOpen( Heap_Name, &heap_ptr)) != SMS_OK)
{
LG_LOG_ERROR_2( "Unable to check if heap: [%s] is open, status: (%d)", Heap_Name, sm_status);
return( DSS_KO);
}
else
{
if( heap_ptr == NULL)
{
LG_LOG_ERROR_1( "DatatStructure heap: [%s] is not open", Heap_Name);
return( DSS_KO);
}
}
/* Verrouillage de la data structure en écriture */
if( ( sm_status = SM_Heap_Lock( heap_ptr, SMD_WRITE, &locked)) != SMS_OK)
{
LG_LOG_ERROR_2( "Unable to lock the data structure heap: [%s] for writing, status: (%d)", heap_ptr->Name, sm_status);
return( DSS_KO);
}
/* Désallocation du chunk */
if( ( sm_status = SM_Chunk_Free( heap_ptr, Ptr)) != SMS_OK)
{
LG_LOG_ERROR_3( "Unable to free a chuck: [%p] from the datastructure heap: [%s], status: [%s]", Ptr, heap_ptr->Name, sm_status);
status = DSS_KO;
}
else
{
status = DSS_OK;
}
/* Déverrouillage de la data structure si besoin */
if( locked == TRUE)
{
if( ( sm_status = SM_Heap_Unlock( heap_ptr)) != SMS_OK)
{
LG_LOG_ERROR_2( "Unable to unlock the data structure heap: [%s], status: (%d)", heap_ptr->Name, sm_status);
status = DSS_KO;
}
}
return( status);
}
/*----------------------------------------------------------------------------*/
/* Routine d'affichage d'un message d'erreur */
/*----------------------------------------------------------------------------*/
/*
void DS_Error_Print ( void )
{
if (DS_stderr) fprintf (DS_stderr, "%s\n", DS_Error_Msg);
}
/*----------------------------------------------------------------------------*/
/* Pour préfixer les noms de heap avec l'identifiant de la librairie */
/*----------------------------------------------------------------------------*/
DST_Status DS_Name_Prefix( char *Prefixed_Name_Ptr, const char *Unprefixed_Name_Ptr)
{
snprintf( Prefixed_Name_Ptr, DSD_NAME_SIZE, "%s/%s", DS_PREFIX, Unprefixed_Name_Ptr);
return( DSS_OK);
}
/*----------------------------------------------------------------------------*/
/* Création d'un sémaphore pour gérer l'ouverture d'une data structure */
/*----------------------------------------------------------------------------*/
DST_Status DS_Semaphore_Create ( NDT_Root *Root_Ptr)
{
DST_RootDesc *RootDesc_Ptr = (DST_RootDesc *)( Root_Ptr->User_Ptr);
union semun sem_ctl;
/* Création du sémaphore */
RootDesc_Ptr->OpenSemId = semget( IPC_PRIVATE, 1, ( 0777 | IPC_CREAT | IPC_EXCL));
if( RootDesc_Ptr->OpenSemId == -1)
{
switch( errno)
{
case ENOMEM:
{
LG_LOG_ERROR_0( "Not enough memory to create a new semaphore");
break;
}
case ENOSPC:
{
LG_LOG_ERROR_0( "The number of semaphores would exceeds the system-imposed limit");
break;
}
default:
{
LG_LOG_ERROR_1( "Unknown error: (%d) while creating a semaphore", errno);
break;
}
}
return( DSS_ERRSEM);
}
/* Initialisation du sémaphore à 0 */
sem_ctl.val = 0;
if( semctl( RootDesc_Ptr->OpenSemId, 0, SETVAL, sem_ctl))
{
LG_LOG_ERROR_1( "Unable to initialize the value of the semaphore: (%x)", RootDesc_Ptr->OpenSemId);
semctl( RootDesc_Ptr->OpenSemId, 0, IPC_RMID, sem_ctl);
return( DSS_ERRSEM);
}
return( DSS_OK);
}
/*----------------------------------------------------------------------------*/
/* Opération sur un sémaphore */
/*----------------------------------------------------------------------------*/
DST_Status DS_Semaphore_Operate( int SemId, struct sembuf *Operations, unsigned int Nb_Oper)
{
if( semop( SemId, Operations, Nb_Oper) == -1)
{
switch( errno)
{
case EAGAIN:
{
LG_LOG_ERROR_0( "The operation would result in suspension of the calling process but the operations have been defined in no wait mode");
break;
}
case EACCES:
{
LG_LOG_ERROR_1( "Current process is not allowed to operate on semaphore: (%x)", SemId);
break;
}
case EIDRM:
{
LG_LOG_ERROR_1( "Semaphore: (%x) does not exist", SemId);
break;
}
case EINTR:
{
LG_LOG_ERROR_1( "A signal was received while operating on semaphore: (%x)", SemId);
return( DSS_ERRSIG);
}
case EINVAL:
{
LG_LOG_ERROR_1( "The semaphore key: (%x) is incorrect or the number of operations which can be done in UNDO mode exceeds the system-imposed limit", SemId);
break;
}
case ENOSPC:
{
LG_LOG_ERROR_0( "The maximum number of process which can operate on semaphore in UNDO mode has been reached");
break;
}
case ERANGE:
{
LG_LOG_ERROR_1( "The value of semaphore: (%x) has reached the system-imposed limit", SemId);
break;
}
default:
{
LG_LOG_ERROR_2( "Unknown error: (%d) while operating on semaphore: (%x)", errno, SemId);
break;
}
}
return( DSS_ERRSEM);
}
return( DSS_OK);
}
/*----------------------------------------------------------------------------*/
/* Fonction manager de la liste des DS ouvertes */
/*----------------------------------------------------------------------------*/
NDT_Status DS_OpenedDS_List_Manager( NDT_Root *Root_Ptr, NDT_Index_Id Index_Id, NDT_Node *Node_Ptr, NDT_Command Command, va_list *Args_Ptr)
{
NDT_Command_Name Command_Name;
LG_LOG_TRACE_1( LGD_LOG_LEVEL_DEFAULT, "Manager command: (%d) called", Command);
switch( Command)
{
case NDD_CMD_MANAGER_VERSION:
{
ND_VA_ARG_GET( Version_Name_Ptr, *Args_Ptr, NDT_Version_Name *);
Command_Name = "NDD_CMD_MANAGER_VERSION";
*Version_Name_Ptr = "OpenedDS_List_Manager 2.0";
return( NDS_OK);
}
case NDD_CMD_INDEX_GET:
{
/*
ND_VA_ARG_GET( Reply_Index_Id_Ptr, *Args_Ptr, NDT_Index_Id *);
ND_VA_ARG_GET( Reply_Command_Ptr, *Args_Ptr, NDT_Command *);
ND_VA_ARG_GET( Cmd, *Args_Ptr, NDT_Command);
ND_VA_ARG_GET( Value_Ptr, *Args_Ptr, void *);
*/
ND_VA_ARG_GET( Reply_Index_Id_Ptr, *Args_Ptr, NDT_Index_Id *);
ND_VA_ARG_GET( Reply_Command_Ptr, *Args_Ptr, NDT_Command *);
ND_VA_ARG_GET( Cmd, *Args_Ptr, NDT_Command);
ND_VA_ARG_GET( Value_Ptr, *Args_Ptr, void *);
Command_Name = "NDD_CMD_INDEX_GET";
switch(Cmd)
{
/*
case NDT_CMD_SOME_USER_CMD:
{
*Reply_Index_Id_Ptr = 0;
*Reply_Command_Ptr = NDD_CMD_SOME_OTHER_CMD;
break;
}
...
*/
default:
{
*Reply_Index_Id_Ptr = Index_Id;
*Reply_Command_Ptr = Cmd;
break;
}
}
return( NDS_OK);
}
case NDD_CMD_VALUE_ALLOC:
{
/*
ND_VA_ARG_GET( Value_Ptr_Ptr, *Args_Ptr, void **);
ND_VA_LIST_OPEN( user_args, *Args_Ptr);
ND_VA_ARG_GET( user_data, user_args, user_type);
ND_VA_ARG_GET( ..., user_args, ...);
ND_VA_LIST_CLOSE( user_args);
*/
ND_VA_ARG_GET( Opened_DataStruct_Ptr_Ptr, *Args_Ptr, DST_DataStruct **);
ND_VA_LIST_OPEN( user_args, *Args_Ptr);
ND_VA_ARG_GET( DS_Name, user_args, char *);
ND_VA_ARG_GET( Root_Ptr, user_args, NDT_Root *);
ND_VA_LIST_CLOSE( user_args);
Command_Name = "NDD_CMD_VALUE_ALLOC";
LG_LOG_TRACE_1( LGD_LOG_LEVEL_DEFAULT, "Command: [%s] called", Command_Name);
if( ( *Opened_DataStruct_Ptr_Ptr = (DST_DataStruct *)malloc( sizeof( DST_DataStruct))) == NULL)
{
LG_LOG_ERROR_1( "Can't allocate value zise: (%d)", sizeof( DST_DataStruct));
return( DSS_KO);
}
else
{
( *Opened_DataStruct_Ptr_Ptr)->Name = DS_Name;
( *Opened_DataStruct_Ptr_Ptr)->Root_Ptr = Root_Ptr;
return( DSS_OK);
}
}
case NDD_CMD_VALUE_FREE:
{
/*
ND_VA_ARG_GET( Value_Ptr, *Args_Ptr, void *);
ND_VA_LIST_OPEN( user_args, *Args_Ptr);
ND_VA_ARG_GET( user_data, user_args, user_type);
ND_VA_ARG_GET( ..., user_args, ...);
ND_VA_LIST_CLOSE( user_args);
*/
ND_VA_ARG_GET( Opened_DataStruct_Ptr, *Args_Ptr, DST_DataStruct *);
Command_Name = "NDD_CMD_VALUE_FREE";
LG_LOG_TRACE_1( LGD_LOG_LEVEL_DEFAULT, "Command: [%s] called", Command_Name);
free( Opened_DataStruct_Ptr);
/*
DS_Free( Root_Ptr, Value_Ptr);
*/
return( NDS_OK);
}
case NDD_CMD_VALUE_COMP:
{
/*
ND_VA_ARG_GET( Value1_Ptr, *Args_Ptr, void *);
ND_VA_ARG_GET( Value2_Ptr, *Args_Ptr, void *);
ND_VA_LIST_OPEN( user_args, *Args_Ptr);
ND_VA_ARG_GET( user_data, user_args, user_type);
ND_VA_ARG_GET( ..., user_args, ...);
ND_VA_LIST_CLOSE( user_args);
*/
ND_VA_ARG_GET( DataStruct1_Ptr, *Args_Ptr, DST_DataStruct *);
ND_VA_ARG_GET( DataStruct2_Ptr, *Args_Ptr, DST_DataStruct *);
int comp;
Command_Name = "NDD_CMD_VALUE_COMP";
switch( Index_Id)
{
case 0:
{
comp = strcmp( DataStruct1_Ptr->Name, DataStruct2_Ptr->Name);
if( comp < 0)
{
return( NDS_LOWER);
}
else
{
if( comp > 0)
{
return( NDS_GREATER);
}
else
{
return( NDS_EQUAL);
}
}
}
default:
{
LG_LOG_ERROR_1( "Unknown comp index: (%d)", Index_Id);
return( NDS_KO);
}
}
return( NDS_OK);
}
case NDD_CMD_VALUE_ADD:
{
/*
ND_VA_ARG_GET( Value_Ptr, *Args_Ptr, void *);
ND_VA_LIST_OPEN( user_args, *Args_Ptr);
ND_VA_ARG_GET( user_data, user_args, user_type);
ND_VA_ARG_GET( ..., user_args, ...);
ND_VA_LIST_CLOSE( user_args);
*/
Command_Name = "NDD_CMD_VALUE_ADD";
return( NDS_OK);
}
case NDD_CMD_VALUE_REMOVE:
{
/*
ND_VA_ARG_GET( Value_Ptr, *Args_Ptr, void *);
ND_VA_LIST_OPEN( user_args, *Args_Ptr);
ND_VA_ARG_GET( user_data, user_args, user_type);
ND_VA_ARG_GET( ..., user_args, ...);
ND_VA_LIST_CLOSE( user_args);
*/
Command_Name = "NDD_CMD_VALUE_REMOVE";
return( NDS_OK);
}
case NDD_CMD_VALUE_PRINT:
{
/*
ND_VA_ARG_GET( Next_Node_Ptr, *Args_Ptr, NDT_Node *);
ND_VA_LIST_OPEN( lib_args, *Args_Ptr);
ND_VA_ARG_GET( Out, lib_args, FILE *);
ND_VA_ARG_GET( Recursive_Mode, lib_args, NDT_Recursive_Mode);
ND_VA_ARG_GET( Recursive_Depth, lib_args, NDT_Recursive_Depth);
ND_VA_ARG_GET( Recursive_Offset, lib_args, NDT_Recursive_Offset);
ND_VA_LIST_OPEN( user_args, lib_args);
ND_VA_ARG_GET( user_data, user_args, user_type);
ND_VA_ARG_GET( ..., user_args, ...);
ND_VA_LIST_CLOSE( user_args);
ND_VA_LIST_CLOSE( lib_args);
void *Value_Ptr = Node_Ptr->Value;
*/
ND_VA_ARG_GET( Next_Node_Ptr, *Args_Ptr, NDT_Node *);
ND_VA_LIST_OPEN( lib_args, *Args_Ptr);
ND_VA_ARG_GET( Out, lib_args, FILE *);
ND_VA_ARG_GET( Recursive_Mode, lib_args, NDT_Recursive_Mode);
ND_VA_ARG_GET( Recursive_Depth, lib_args, NDT_Recursive_Depth);
ND_VA_ARG_GET( Recursive_Offset, lib_args, NDT_Recursive_Offset);
ND_VA_LIST_CLOSE( lib_args);
DST_DataStruct *DataStruct_Ptr = (DST_DataStruct *)Node_Ptr->Value;
Command_Name = "NDD_CMD_VALUE_PRINT";
LG_LOG_INFO_2( "Name: [%s] Root: (%p)", DataStruct_Ptr->Name, DataStruct_Ptr->Root_Ptr);
return( NDS_OK);
}
case NDD_CMD_INFO_PRINT:
{
/*
ND_VA_ARG_GET( Next_Node_Ptr, *Args_Ptr, NDT_Node *);
ND_VA_LIST_OPEN( lib_args, *Args_Ptr);
ND_VA_ARG_GET( Out, lib_args, FILE *);
ND_VA_ARG_GET( Recursive_Mode, lib_args, NDT_Recursive_Mode);
ND_VA_ARG_GET( Recursive_Depth, lib_args, NDT_Recursive_Depth);
ND_VA_ARG_GET( Recursive_Offset, lib_args, NDT_Recursive_Offset);
ND_VA_LIST_OPEN( user_args, lib_args);
ND_VA_ARG_GET( user_data, user_args, user_type);
ND_VA_ARG_GET( ..., user_args, ...);
ND_VA_LIST_CLOSE( user_args);
ND_VA_LIST_CLOSE( lib_args);
*/
ND_VA_ARG_GET( Next_Node_Ptr, *Args_Ptr, NDT_Node *);
ND_VA_LIST_OPEN( lib_args, *Args_Ptr);
ND_VA_ARG_GET( Out, lib_args, FILE *);
ND_VA_ARG_GET( Recursive_Mode, lib_args, NDT_Recursive_Mode);
ND_VA_ARG_GET( Recursive_Depth, lib_args, NDT_Recursive_Depth);
ND_VA_ARG_GET( Recursive_Offset, lib_args, NDT_Recursive_Offset);
ND_VA_LIST_CLOSE( lib_args);
Command_Name = "NDD_CMD_INFO_PRINT";
return( NDS_OK);
}
case NDD_CMD_USER_TRAVERSE:
{
/*
ND_VA_ARG_GET( Next_Node_Ptr, *Args_Ptr, NDT_Node *);
ND_VA_LIST_OPEN( user_args, *Args_Ptr);
ND_VA_ARG_GET( user_data, user_args, user_type);
ND_VA_ARG_GET( ..., user_args, ...);
ND_VA_LIST_CLOSE( user_args);
void *Value_Ptr = Node_Ptr->Value;
*/
Command_Name = "NDD_CMD_USER_TRAVERSE";
/*
return( NDS_OK);
*/
}
default:
{
LG_LOG_ERROR_1( "Manager called with an undefined command: (%d)", Command);
return( NDS_ERRAPI);
}
}
LG_LOG_ERROR_2( "Manager internal error with command: (%d) name: [%s]", Command, Command_Name);
return( NDS_OK);
}